1

Let $p$ be odd prime number,show that:

$$p=3k+1\Longleftrightarrow \exists a,b\in\Bbb Z^+ \textrm{ such that } p=a^2+ab+b^2$$

I guess this is true because I find

when: $p=7,k=2$,and $$7=2^2+2\cdot 1+1^2$$

(2) when $p=13,k=4$,and $$13=1^2+1\cdot 3+3^2$$ and so on.

How do I prove this ?

abiessu
  • 8,115
math110
  • 93,304

1 Answers1

0

HINT:

For odd prime $p$,

$$a^2+ab+b^2=p\implies(2a+b)^2\equiv-3b^2\mod p$$ $$\iff\left(\frac{2a+b}b\right)^2=-3\mod p$$

Check when $-3$ is a Quadratic Residue $\pmod p$

Now, use this


Alternatively, $$\left(\frac{-3}p\right)=\left(\frac{-1}p\right)\cdot\left(\frac3p\right)$$

$-1$ is a quadratic residue modulo $p$ if and only if $p\equiv 1\pmod{4}$

Using Quadratic Reciprocity Theorem $$\left(\frac3p\right)\left(\frac p3\right)=(-1)^{\frac{(p-1)(3-1)}4}=(-1)^{\frac{p-1}2}$$

$$a\equiv\pm1\pmod 3\implies a^2\equiv1\pmod3$$

Can you take it home from here?