Let $A,B$ be two subsets of a set $X$,and let $f:X \to Y$ be a function.Prove that $f(A) \backslash f(B) \subseteq f(A\backslash B)$
So I first show what these sets are. The set $f(A) \backslash f(B) =\{y \in Y \mathtt{\ and \ } \exists x \in B (\ y=f(x)) \mathtt{\ and \ } \neg(\exists u \in B (\ y=f(u)))\}=\{y \in Y \mathtt{\ and \ } \exists x \in B (\ y=f(x)) \mathtt{\ and \ } (\forall u \in B (\ y\ne f(u)))\}$
And the set $f(A \backslash B)=\{y \in Y \mathtt{\ and \ } \exists x \in A\backslash B (y=f(x)) \} = \{y \in Y \mathtt{\ and \ } \exists x (x \in A \mathtt{\ and \ } x \notin B \ y=f(x)) \} $
and to prove every $y \in f(A)\backslash f(B) \implies y \in f(A\backslash B) $.
Suppose $y \in f(A)\backslash f(B) $,then exists an $x \in A$ such that $y=f(x)$,and $x$must $ \notin B$ for if $x \in B$ then $f(x)\neq y $ leads to contradition.This means $y=f(x)$ and $x \in A $ and $x \notin B $ then $y$ is an element of $f(A\backslash B)$.And this complete the proof.
I'm a self-study guy and I feel my statement quite strange.Although I got some intuition about the question,I'm not sure whether I'm doing right. Any help to correct or improve my statement is welcome.
Thanks.