Prove $\lim_{x\to 1} {2+4x \over 3} = 2$ using the epsilon delta definition of a limit.
if $0 < \left|x-1\right| < \delta$ then $\left|{2+4x \over 3}-2\right| < \epsilon$
scratch work for finding $\delta$ $$ \left|{2+4x \over 3}-2\right| < \epsilon $$ $$ 2-\epsilon < {2+4x \over 3} < 2 + \epsilon $$ $$ 6-3\epsilon < 2+4x < 6 + 3\epsilon $$
$$ 4-3\epsilon < 4x < 4 + 3\epsilon $$
$$ 1-\frac34\epsilon < x < 1 + \frac34\epsilon $$
$$ \frac34\epsilon < x-1 < \frac34\epsilon $$
$$ \left|x-1\right| < \frac34\epsilon $$ This is where I need help.
Given $\epsilon > 0$ and let $\delta = \frac34\epsilon$
$$\left|{2+4x\over 3}-2\right| < \frac43\delta$$ $$-\frac43\delta < {2+4x \over 3}-2 < \frac43\delta $$ $$2-\frac43\delta < {2+4x\over 3}< 2 + \frac43\delta$$ $$6-4\delta<2+4x < 6+4\delta $$ $$4-4\delta<4x<4+4\delta$$ $$1-\delta<x<1+\delta$$ $$\left|x-1\right|<\delta$$
I'm pretty sure the $\frac43\delta$ part is wrong on the first line which makes the rest wrong but I'm not sure how to do this. Thanks.