If the numbers have different signs, $0$ is among them, and the proposition is trivial.
If not, we can WOLOG suppose that they are positive.
For any given $n\in\Bbb N$ and a prime $p$, let $\nu_p(n)$ the greatest integer $k$ such that $p^k$ that divides $n$ (it can be $0$, of course).
Then
$$\begin{align}
\nu_p\left(\prod_{k=1}^r(n+k)\right)&=\nu_p\left(\frac{(n+r)!}{n!}\right)\\
&=\sum_{\alpha=1}^\infty\left\lfloor\frac{n+r}{p^\alpha}\right\rfloor- \sum_{\alpha=1}^\infty\left\lfloor\frac{n}{p^\alpha}\right\rfloor
\end{align}$$
It suffices to show that for each $n$, $p$ and $\alpha$,
$$\left\lfloor\frac{n+r}{p^\alpha}\right\rfloor-\left\lfloor\frac{n}{p^\alpha}\right\rfloor\geq\left\lfloor\frac{r}{p^\alpha}\right\rfloor$$
For this, write $\left\lfloor\frac{n+r}{p^\alpha}\right\rfloor=\frac{n+r}{p^\alpha}-\epsilon_1$ and $\left\lfloor\frac{n}{p^\alpha}\right\rfloor=\frac{n}{p^\alpha}-\epsilon_2$, where $0\leq\epsilon_1,\epsilon_2<1$. Then,
$$\left\lfloor\frac{n+r}{p^\alpha}\right\rfloor-\left\lfloor\frac{n}{p^\alpha}\right\rfloor=\frac r{p^\alpha}-(\epsilon_1-\epsilon_2)$$
Since $\epsilon_1-\epsilon_2<1$, this concludes the proof.
Note: The difference $\epsilon_1-\epsilon_2$ is always between $-1$ and $1$. If it's positive or zero, we have
$$\left\lfloor\frac{n+r}{p^\alpha}\right\rfloor-\left\lfloor\frac{n}{p^\alpha}\right\rfloor=\left\lfloor\frac{r}{p^\alpha}\right\rfloor$$
and if it is negative
$$\left\lfloor\frac{n+r}{p^\alpha}\right\rfloor-\left\lfloor\frac{n}{p^\alpha}\right\rfloor=\left\lfloor\frac{r}{p^\alpha}\right\rfloor+1$$