5

$$\lim_{n\to\infty}\bigg(\frac{1}{\sqrt{9n^2-1^2}}+\frac{1}{\sqrt{9n^2-2^2}}+ \dots +\frac{1}{\sqrt{9n^2-n^2}}\bigg)$$ I need a hint. I see that maybe compute with integral. But what the integrable function?

Simankov
  • 439
  • 2
  • 17

3 Answers3

10

Hint Since you ask for a simple hint then: Use a Riemann sum and compute this integral $$\int_0^1\frac{dx}{\sqrt{9-x^2}}$$

5

$$\text{As }\lim_{n \to \infty} \frac1n\sum_{r=1}^n f\left(\frac rn\right)=\int_0^1f(x)dx$$

Here the $r$( where $1\le r\le n$)th term $=\displaystyle\frac n{\sqrt{9n^2-r^2}}=\frac1{\sqrt{9-\left(\frac rn\right)^2}}$

3

Well, here is a hint, factor out $n$, and use it to convert it into Riemann Integration.

S L
  • 11,731