First, note that $42\equiv 2 (\bmod 5)$.
Extended Euclidean Algorithm (one of approaches):
When two numbers $a, m$ are given, $a<m$, $GCD(a,m)=1$, and we need to find $b$, such that
$$
a\cdot b = 1 (\bmod~m),\tag{1}
$$
then denote
$$
r_0 = m, \qquad v_0 = 0;
$$
$$
r_1 = a, \qquad\; v_1 = 1;
$$
and let's find next values:
$$
s_n = \left\lfloor \dfrac{r_{n-1}}{r_n} \right\rfloor;
$$
$$
r_{n+1} = r_{n-1}-r_n s_n;
$$
$$
v_{n+1} = v_{n-1}-v_n s_n;
$$
and repeat it until $r_n=1$ $(r_{n+1}=0)$.
Last value $v_n$ (when $r_n=1$) will figure as solution of equation $(1)$.
It is comfortable to build appropriate table:
Example:
$m=1234$, $a=67$, $b=?$
$$
\begin{array}{|c|r|r|r|ll|}
\hline \\
n) & r_n & v_n & s_n & \color{gray}{\mbox{check:} ~~ a \cdot v_n} & \color{gray}{\equiv r_n (\bmod~m)}\\
\hline \\
0) & r_0=m=\color{red}{1234} & \color{red}{0} & - & & \\
1) & r_1=a=\color{red}{67} & \color{red}{1} & 18 & \color{gray}{67\cdot 1} & \color{gray}{\equiv 67 (\bmod~1234)} \\
2) & 28 & -18 & 2 & \color{gray}{67\cdot (-18)} & \color{gray}{\equiv 28 (\bmod~1234)} \\
3) & 11 & 37 & 2 & \color{gray}{67\cdot 37} & \color{gray}{\equiv 11 (\bmod~1234)} \\
4) & 6 & -92 & 1 & \color{gray}{67\cdot (-92)} & \color{gray}{\equiv 6 (\bmod~1234)} \\
5) & 5 & 129 & 1 & \color{gray}{67\cdot 129} & \color{gray}{\equiv 5 (\bmod~1234)} \\
6) & 1 & -221 & 5 & \color{gray}{67\cdot (-221)} & \color{gray}{\equiv 1 (\bmod~1234)} \\
\color{gray}{7)} & \color{gray}{0} & & & & \\\hline
\end{array}
$$
So, $b\equiv -221 \equiv 1013 (\bmod~1234)$.
We need x.
– Prakash Wadhwani May 01 '14 at 13:13