$\newcommand{\angles}[1]{\left\langle\, #1 \,\right\rangle}
\newcommand{\braces}[1]{\left\lbrace\, #1 \,\right\rbrace}
\newcommand{\bracks}[1]{\left\lbrack\, #1 \,\right\rbrack}
\newcommand{\ceil}[1]{\,\left\lceil\, #1 \,\right\rceil\,}
\newcommand{\dd}{{\rm d}}
\newcommand{\ds}[1]{\displaystyle{#1}}
\newcommand{\expo}[1]{\,{\rm e}^{#1}\,}
\newcommand{\fermi}{\,{\rm f}}
\newcommand{\floor}[1]{\,\left\lfloor #1 \right\rfloor\,}
\newcommand{\half}{{1 \over 2}}
\newcommand{\ic}{{\rm i}}
\newcommand{\iff}{\Longleftrightarrow}
\newcommand{\imp}{\Longrightarrow}
\newcommand{\Li}[1]{\,{\rm Li}_{#1}}
\newcommand{\pars}[1]{\left(\, #1 \,\right)}
\newcommand{\partiald}[3][]{\frac{\partial^{#1} #2}{\partial #3^{#1}}}
\newcommand{\pp}{{\cal P}}
\newcommand{\root}[2][]{\,\sqrt[#1]{\vphantom{\large A}\,#2\,}\,}
\newcommand{\sech}{\,{\rm sech}}
\newcommand{\sgn}{\,{\rm sgn}}
\newcommand{\totald}[3][]{\frac{{\rm d}^{#1} #2}{{\rm d} #3^{#1}}}
\newcommand{\ul}[1]{\underline{#1}}
\newcommand{\verts}[1]{\left\vert\, #1 \,\right\vert}$
$\ds{\int_{-\infty}^{\infty}{\dd x \over x^{4} + ax^{2} + b^{2}}
={\pi \over b\root{2b + a}}:\ {\large ?}.\qquad a, b\ >\ 0\,,\quad
a^{2} - 4b^{2}\ \geq\ 0}$.
Indeed, this is essentially the @user111187 proof with the addition of some omitted details:
\begin{align}{\cal I}&\equiv\color{#66f}{\large
\int_{-\infty}^{\infty}{\dd x \over x^{4} + ax^{2} + b^{2}}}
=2\int_{0}^{\infty}{1 \over x^{2}}\,{\dd x \over x^{2} + a + b^{2}/x^{2}}
\\[5mm]&\imp\quad \half\,{\cal I}=\int_{0}^{\infty}{1 \over x^{2}}\,
{\dd x \over \pars{x - b/x}^{2} + 2b + a}\tag{1}
\end{align}
With $\ds{{b \over x}\equiv t\ \imp\ x = {b \over t}}$ we'll have:
\begin{align}\half\,{\cal I}&
=\int_{\infty}^{0}{t^{2} \over b^{2}}\,
{-b\,\dd t/t^{2} \over \pars{b/t - t}^{2} + 2b + a}
={1 \over b}\int_{0}^{\infty}{\dd t \over \pars{b/t - t}^{2} + 2b + a}\tag{2}
\end{align}
With $\pars{1}$ and $\pars{2}$:
\begin{align}
\half\,b{\cal I}&=\int_{0}^{\infty}{b \over x^{2}}\,
{\dd x \over \pars{x - b/x}^{2} + 2b + a}
\\[5mm]\half\,b{\cal I}&
=\int_{0}^{\infty}{\dd x \over \pars{x - b/x}^{2} + 2b + a}
\\[5mm]\mbox{and}\
b{\cal I}&=\half\,b{\cal I} + \half\,b{\cal I}
=\int_{0}^{\infty}{\pars{b/x^{2} + 1}\,\dd x \over \pars{x - b/x}^{2} + 2b + a}
\end{align}
With $\ds{u \equiv x - {b \over x}\ \imp\ \dd u = \pars{1 + {b \over x^{2}}}
\,\dd x}$ we'll get
\begin{align}
b{\cal I}&
=\int_{-\infty}^{\infty}{\dd u \over u^{2} + 2b + a}
={2 \over \root{2b + a}}\
\overbrace{\int_{0}^{\infty}{\dd u \over u^{2} + 1}}
^{\ds{\color{#c00000}{\pi \over 2}}}\ =\
{\pi \over \root{2b + a}}
\\[5mm]\imp{\cal I}&\equiv\color{#66f}{\large
\int_{-\infty}^{\infty}{\dd x \over x^{4} + ax^{2} + b^{2}}
={\pi \over b\root{2b + a}}}
\end{align}