$1.) \; \cos x+8\sin x-7=0; \tag{1}$
$2.) \; \cos^2 x = (7- 8\sin x)^2; \tag{2}$
$3.) \; \cos^2 x = 1 - \sin^2 x; \tag{3}$
$4.) \; 1 - \sin^2 x = (7- 8\sin x)^2; \tag{4}$
$5.) \; 1 - \sin^2 x = 49 - 112 \sin x + 64 \sin^2 x; \tag{5}$
$6.) \; 65 \sin^2 x -112\sin x + 48 = 0; \tag{6}$
$7.) \; \sin x = \dfrac{112 \pm \sqrt{(112)^2 - 4(48)(65)}}{130}; \tag{7}$
$8.) \; \sin x = \dfrac{112 \pm \sqrt{12,544 -12,480}}{130}; \tag{8}$
$9.) \sin x = \dfrac{112 \pm 8}{130} = \dfrac{104}{130}, \dfrac{120}{130} = \dfrac{4}{5}, \dfrac{12}{13}; \tag{9}$
$10.) \; \text{Note there exist unique} \; \alpha, \beta \in [0, \dfrac{\pi}{2}] \; \text{with} \; \sin \alpha = \dfrac{4}{5}, \sin \beta = \dfrac{12}{13}; \tag{10}$
$11.) \; \text{Note} \; \cos \alpha = \dfrac{3}{5}, \cos \beta = \dfrac{5}{13}; \tag{11}$
$12.) \; \text{Note} \; \alpha \; \text{alone satisfies (1)}; \tag{12}$
$13.) \; \text{Note there exist unique} \; \gamma, \delta \in [\dfrac{\pi}{2}, \pi] \; \text{with} \; \sin \gamma = \dfrac{4}{5}, \sin \delta = \dfrac{12}{13}; \tag{13}$
$14.) \; \text{Note that} \; \cos \gamma = -\dfrac{3}{5}, \cos \delta = -\dfrac{5}{13}; \tag{14}$
$15.) \; \text{Note that} \; \delta \; \text{alone satisfies (1)}; \tag{15}$
$16.) \; \text{Note by periodicity} \; \alpha \pm 2n\pi, \delta \pm 2n\pi \; \text{satisfy (1) for} \; n \in \Bbb Z; \tag{16}$
$17.) \; \text{Conclude that all solutions are given by item (16) above}; \tag{17}$
$18.) \; \text{Kick back for a minute; you deserve it!} \tag{18}$
Hope this helps! Cheerio,
and as always,
Fiat Lux!!!