$$ I:=\int_0^{\infty} \frac{\ln \cos^2 x}{x^2}\text{d}x=-\pi. $$ Using $2\cos^2 x=1+\cos 2x$ failed me because I ran into two divergent integrals after using $\ln(ab)=\ln a + \ln b$ since I obtained $\int_0^\infty x^{-2}\text{d}x$ and $\int_0^\infty (1+\cos^2 x)\text{d}x $ which both diverge. Perhaps we should try a complex analysis approach? I also tried writing $$ I(\alpha)=\int_0^\infty \frac{\ln \cos^2 \alpha \,x}{x^2}\text{d}x $$ and obtained $$ -\frac{dI(\alpha)}{d\alpha}=2\int_0^\infty \frac{\tan \alpha x}{x}\text{d}x=\int_{-\infty}^\infty\frac{\tan \alpha x}{x}\text{d}x. $$ Taking a second derivative $$ I''(\alpha)=\int_{-\infty}^\infty {\sec^2 (\alpha x)}\, \text{d}x $$ Random Variable pointed out how to continue from the integral after the 1st derivative, but is it possible to work with this integral $\sec^2 \alpha x$? Thanks
4 Answers
Let the desired integral be denoted by $I$. Note that $$\eqalign{ 2I&=\int_{-\infty}^\infty\frac{\ln(\cos^2x)}{x^2}dx= \sum_{n=-\infty}^{+\infty}\left(\int_{n\pi}^{(n+1)\pi}\frac{\ln(\cos^2x)}{x^2}dx\right)\cr &=\sum_{n=-\infty}^{+\infty}\left(\int_{0}^{\pi}\frac{\ln(\cos^2x)}{(x+n\pi)^2}dx\right) \cr &=\int_{0}^{\pi}\left(\sum_{n=-\infty}^{+\infty} \frac{1}{(x+n\pi)^2}\right)\ln(\cos^2x)dx \cr &=\int_{0}^{\pi}\frac{\ln(\cos^2x)}{\sin^2x}dx \cr } $$ where the interchange of the signs of integration and summation is justified by the fact that the integrands are all negative, and we used the well-known expansion: $$ \sum_{n=-\infty}^{+\infty} \frac{1}{(x+n\pi)^2}=\frac{1}{\sin^2x}.\tag{1} $$ Now using the symmetry of the integrand arround the line $x=\pi/2$, we conclude that $$\eqalign{ I&=\int_{0}^{\pi/2}\frac{\ln(\cos^2x)}{\sin^2x}dx\cr &=\Big[-\cot(x)\ln(\cos^2x)\Big]_{0}^{\pi/2}+\int_0^{\pi/2}\cot(x)\frac{-2\cos x\sin x}{\cos^2x}dx\cr &=0-2\int_0^{\pi/2}dx=-\pi. } $$ and the announced conclusion follows.$\qquad\square$
Remark: Here is a proof of $(1)$ that does not use residue theorem. Consider $\alpha\in(0,1)$, and let $f_\alpha$ be the $2\pi$-periodic function that coincides with $x\mapsto e^{i\alpha x}$ on the interval $(-\pi,\pi)$. It is easy to check that the exponential Fourier coefficients of $f_\alpha$ are given by $$ C_n(f_\alpha)=\frac{1}{2\pi}\int_{-\pi}^{\pi}f_\alpha(x)e^{-inx}dx=\sin(\alpha\pi)\frac{(-1)^n}{\alpha \pi-n\pi} $$ So, by Parseval's formula we have $$ \sum_{n\in\Bbb{Z}}\vert C_n(f_\alpha)\vert^2=\frac{1}{2\pi}\int_{-\pi}^\pi\vert f_\alpha(x)\vert^2dx $$ That is $$ \sin^2(\pi\alpha) \sum_{n\in\Bbb{Z}}\frac{1}{(\alpha\pi-n\pi)^2}=1 $$ and we get $(1)$ by setting $x=\alpha\pi\in(0,\pi)$.

- 1,871

- 28,772
-
1Could you elaborate a bit more on that series expansion for $\dfrac1{\sin^2x}$ ? Are you aware of any ways to prove it which do not require residues or contour integrals? – Lucian Apr 30 '14 at 17:10
-
@Omran yes do you have proof of this series? Thank you for your answer, I would appreciate if you could add detail on this matter however. – Jeff Faraci Apr 30 '14 at 17:11
-
-
@OmranKouba THank you for the update. IT is very clear now. Thanks +1 – Jeff Faraci Apr 30 '14 at 21:45
There is a wonderful solution: By Lobachevsky Integral Formula:If f(x) meet $$f(x\pm\pi)=f(x)$$ then $$\int_0^\infty f(x)\cdot\Big(\frac{\sin x}{x}\Big)^2dx=\int_0^\frac{\pi}{2}f(x)dx$$ So back to this problem. $$I=\int_0^\infty\frac{\ln^2\cos x}{x^2}dx=\int_0^\infty\frac{\ln^2\cos x}{\sin^2x}\cdot\Big(\frac{\sin x}{x}\Big)^2dx=\int_0^\frac{\pi}{2}\frac{\ln^2\cos x}{\sin^2x}dx$$ $$=2\int_0^\frac{\pi}{2}\ln\cos xd\cot x=2\Big(\cot x\ln\cos x\Big|_0^\frac{\pi}{2}-\int_0^\frac{\pi}{2}\cot x\cdot\tan xdx\Big)$$ Notice $$\lim_{x\to\frac{\pi}{2}}\cot x\ln\cos x=\lim_{x\to\frac{\pi}{2}}\frac{\cos x\ln\cos x}{\sin x}=0$$ and $$\lim_{x\to0}\cot x\ln\cos x=\lim_{x\to0}\frac{\cos x\ln(1-2\sin^2\frac{x}{2})}{\sin x}=\lim_{x\to0}\frac{\cos x(-2\sin^2\frac{x}{2})}{x}=0$$ so $$I=-2\int_0^\frac{\pi}{2}\cot x\cdot \tan xdx=-2\int_0^\frac{\pi}{2}dx=-\pi$$

- 242
Complete the steps for the method attempted in the original problem.
$$I(\alpha)=\int_0^\infty \frac{\ln(\cos^2(\alpha x))}{x^2} dx$$ $$\frac{d}{d\alpha}I(\alpha)=-2\int_0^\infty \frac{\tan(\alpha x)}{x}dx$$
Subsitution: $t=\alpha x$
$$\frac{d}{d\alpha}I(\alpha)=-2\int_{0}^\infty \frac{\tan(t)}{t}dt=-\int_{-\infty}^\infty \frac{\tan(t)}{t}dt=-\sum_{n=-\infty}^\infty \int_{-\frac{\pi}{2}+n\pi}^{\frac{\pi}{2}+n\pi} \frac{\tan(t)}{t}dt$$
Substitution: $z=t-n\pi$ and note that, $\tan(z+n\pi)=\tan(z)$
$$\frac{d}{d\alpha}I(\alpha)=-\sum_{n=-\infty}^\infty \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{\tan(z)}{n\pi+z}dz=-\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \sum_{n=-\infty}^\infty \frac{\tan(z)}{n\pi+z}dz=-\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \tan(z)\sum_{n=-\infty}^\infty \frac{1}{n\pi+z}dz$$
Note, $$\sum_{n=-\infty}^\infty \frac{1}{n\pi+z}=\cot(z)$$
So we have,
$$\frac{d}{d\alpha}I(\alpha)=-\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \tan(z)\cot(z)dz=-\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} 1dz=-\pi$$
Integrate on $\alpha$, and use initial condition, $I(0)=0$
$$I(\alpha)=-\pi\alpha+C, ~~~C=0$$
Final answer:
$$\int_0^\infty \frac{\ln(\cos^2(x))}{x^2} dx=I(1)=-\pi$$

- 21,128
By Lobachevsky Integral Formula, we have $$ \begin{aligned} & I=\int_0^{\infty} \frac{\ln \left(\cos ^2 x\right)}{\sin ^2 x} d x \\ & =\int_0^{\infty} \ln \left(\cos ^2 x\right) d(\cot x) \\ & =\int_0^{\infty} \ln \left(\frac{u^2}{1+u^2}\right) d u \text {, where } u=\cot x \\ & =\left[u \ln \left(\frac{u^2}{u^2+1}\right)\right]_0^{\infty}-\int_0^{\infty} u \cdot \frac{2}{u\left(1+u^2\right)} d u \\ & =-2\left[\tan ^{-1} u\right]_0^{\infty}\\&=-\pi \\ & \end{aligned} $$
EDIT: fixed typo $d x$ to $d u$ during the step $u=\cot x $.
error estimates. As you can see Mathematica has trouble computing it but it gives its exact within its error bound. But this is in many Integral Tables book. One example is Gradshteyn and Ryzhik – Jeff Faraci Apr 30 '14 at 15:27