1

$(m_1,m_2)=1, a \equiv b \pmod {m_1} , a \equiv b \pmod {m_2} \Leftrightarrow a \equiv b \pmod {m_1 \cdot m_2}$

The proof of the direction $" \Rightarrow "$ is the following:

$a \equiv b \pmod {m_1} , a \equiv b \pmod {m_2}$

Then $m_1 \mid a-b, m_2 \mid a-b$

So $[m_1, m_2] \mid a-b$

But $[m_1, m_2]=\frac{m_1 \cdot m_2}{(m_1, m_2)}=m_1 \cdot m_2$

So $m_1 \cdot m_2 \mid a-b$, so $a \equiv b \pmod {m_1 \cdot m_2}$

$$$$ Could you explain me how we conclude from $"m_1 \mid a-b, m_2 \mid a-b "$ that $"[m_1, m_2] \mid a-b"$??

Mary Star
  • 13,956

0 Answers0