$(m_1,m_2)=1, a \equiv b \pmod {m_1} , a \equiv b \pmod {m_2} \Leftrightarrow a \equiv b \pmod {m_1 \cdot m_2}$
The proof of the direction $" \Rightarrow "$ is the following:
$a \equiv b \pmod {m_1} , a \equiv b \pmod {m_2}$
Then $m_1 \mid a-b, m_2 \mid a-b$
So $[m_1, m_2] \mid a-b$
But $[m_1, m_2]=\frac{m_1 \cdot m_2}{(m_1, m_2)}=m_1 \cdot m_2$
So $m_1 \cdot m_2 \mid a-b$, so $a \equiv b \pmod {m_1 \cdot m_2}$
$$$$ Could you explain me how we conclude from $"m_1 \mid a-b, m_2 \mid a-b "$ that $"[m_1, m_2] \mid a-b"$??