Possible Duplicate:
Prove that $\gcd(a^n - 1, a^m - 1) = a^{\gcd(n, m)} - 1$
$\gcd(b^x - 1, b^y - 1, b^ z- 1,…) = b^{\gcd(x, y, z,…)} -1$
I'm trying to figure this out:
Show that for all positive integers $m$ and $n$
$\gcd(2^m-1, 2^n-1) = 2^{\gcd(m,n)} -1$
I appreciate your help, Thanks.
Note: $\gcd$ stands for the greatest common divisor.