How do we evaluate the infinite nested radical $ \sqrt {2+ \sqrt {3+ \sqrt{4+ \sqrt{5+\cdots}}} } $ $\space $?
Please help
N.B. :- It is not a duplicate
How do we evaluate the infinite nested radical $ \sqrt {2+ \sqrt {3+ \sqrt{4+ \sqrt{5+\cdots}}} } $ $\space $?
Please help
N.B. :- It is not a duplicate
There is no known closed form for this number, except $C^2-1$, where $C=\sqrt{1+\sqrt{2+\sqrt{3+\dots}}}$ is the Nested Radical Constant. By a numerical evaluation, I find
$$C^2-1=2.090327576790576359192544506688116904296\dots$$