Proposition: $\mathbb{R}$ is uncountable.
Proof: Let define the map $f: \mathcal{P}(\mathbb{N}) \to \mathbb{R}$ by the formula $f(A):= \sum_{n\in A}10^{-n}$. Note that the map is well-define since $\sum_{n=0}^\infty 10^{-n}$ is absolutely convergent.
We will show that $f$ is one-to-one. Suppose to the contrary that there exists $A, B \in \mathcal{P}(\mathbb{N}) $ such that $f(A)=f(B)$ but $A \not=B$. Then the set $(A\setminus B )\cup (B\setminus A)$ is non-empty. Let $n_0$ be the least element and for sake of definiteness assume that $n_0 \in A\setminus B $. So we have
\begin{align}0=f(A)-f(B)=\sum_{n\in A}10^{-n}-\sum_{n\in B}10^{-n}=\sum_{n\in A:n<n_0}10^{-n}+10^{-n_0}+\sum_{n\in A:n>n_0}10^{-n}\\-\sum_{n\in B:n<n_0}10^{-n}-\sum_{n\in B:n>n_0}10^{-n}\\
=10^{-n_0}+\sum_{n\in A:n>n_0}-\sum_{n\in B:n>n_0}10^{-n}\\
\ge 10^{-n_0}-\sum_{n>n_0}10^{-n}\\
=10^{-n_0}-\frac{10^{-n_0}}{9}>0
\end{align}
a contradiction. Hence $f$ is an injection.
Then $\mathcal{P}(\mathbb{N})\simeq f(\mathcal{P}(\mathbb{N}))$, i.e., $f(\mathcal{P}(\mathbb{N}))$ has the same cardinality as $\mathcal{P}(\mathbb{N})$ and by the Cantor's theorem $\mathcal{P}(\mathbb{N})$ is uncountable. Since $f(\mathcal{P}(\mathbb{N}))$ is a subset of $\mathbb{R}$ then this forces $\mathbb{R}$ to be uncountable.