I am trying to calculate the integral $$ I_n=\int \limits_0^\infty \prod_{k=1}^n \frac{\sin \frac{x}{2k-1}}{\frac{x}{2k-1}}\mathrm dx. $$ (I have literature on this, if people want). Note, we can write the amazing sequence $\{I_1,I_2,I_3,I_4,I_5,I_6,I_7\}$ as $$ \bigg\{\frac{\pi}{2},\frac{\pi}{2},\frac{\pi}{2},\frac{\pi}{2},\frac{\pi}{2},\frac{\pi}{2},\frac{\pi}{2}\bigg\}. $$ BUT $I_8\neq \pi/2$, how can we derive this same result for $n=1,2,\ldots,7$? And why does it deviate at $I_8$? Thanks, in integral form this sequence is represented by $$ \frac{\pi}{2}=I_1=\int\limits_0^\infty \frac{\sin x}{x}\mathrm dx=I_2=\int \limits_0^\infty \frac{\sin x}{x}\frac{\sin \frac{x}{3}}{\frac{x}{3}}\mathrm dx=I_3=\int\limits_0^\infty \frac{\sin x}{x}\frac{\sin \frac{x}{3}}{\frac{x}{3}}\frac{\sin \frac{x}{5}}{\frac{x}{5}}\mathrm dx=\cdots $$ HOWEVER, this fails for $I_8$. The strange result for $I_8$ is given by $$ I_8= \frac{467807924713440738696537864469}{ 935615849440640907310521750000}\pi\approx \frac{\pi}{2}-2.31\cdot 10^{-11} $$
Note we can calculate $I_1$ by using integration wrt parameter and first considering the damped Sine- integral \begin{equation} \eta(\lambda)=\int_{0}^\infty e^{-\lambda x}\frac{\sin x}{x}\mathrm dx. \end{equation} We now wish to calculate the Dirichlet integral $I_1$ using calculus and $\eta(\lambda)$, \begin{equation} I_1=\int_{0}^\infty \frac{\sin x}{x}\mathrm dx. \end{equation} by differentiating $\eta(\lambda)$. We start by differentiating this to obtain $$ \eta'(\lambda)=\frac{d}{d\lambda} \int_{0}^{\infty} e^{-\lambda x}\frac{\sin x}{x}\mathrm dx =\int_{0}^\infty \frac{\partial}{\partial \lambda} e^{-\lambda x}\frac{\sin x}{x}\mathrm dx=-\int_{0}^\infty e^{-\lambda x}{\sin x}\ \mathrm dx. $$ Note, that passing the differentiation outside of the integral inside the integral is allowed since the integral is a continuous function of x and $\lambda$ for x$\in(-\infty,\infty)$ and $\lambda \in (0,\infty)$. We can easily integrate this by writing the sine function as the imaginary part of an exponential, that is $$ -\int_{0}^\infty e^{-\lambda x}{\sin x}\ \mathrm dx=-\Im\bigg[-\int_{0}^\infty e^{-\lambda x} e^{ix}\mathrm dx\bigg]=-\Im \bigg[-\int_{0}^\infty e^{-x(\lambda-i)}\mathrm dx\bigg]=-\Im{\frac{1}{\lambda-i}}=-\frac{1}{\lambda^2+1}, $$where I integrated the exponential using analysis rules and next used $$ -\Im\bigg [\frac{1}{\lambda-i}\bigg]=-\Im \bigg[\frac{1}{\lambda-i}\cdot \frac{\lambda+i}{\lambda+i}\bigg]=-\frac{1}{\lambda^2+1}. $$ Thus we can see that \begin{equation} \eta'(\lambda)= -\frac{1}{\lambda^2+1}. \end{equation} Now we need to use integrate this relation carefully. We do this by writing $$ \int_{\lambda}^{\infty}\frac{\mathrm d\eta}{\mathrm d\xi}\mathrm d\xi=\eta(\infty)-\eta(\lambda)=-\eta(\lambda) $$ since $\eta(\infty)=0$. We can now use this and the result above to give $$ -\eta(\lambda)=\int_{\lambda}^{\infty} \eta'(\xi)\mathrm d\xi=\int_{\lambda}^{\infty} -\frac{1}{\xi ^2 +1}\mathrm d\xi=-(\arctan{\infty}-\arctan{\lambda})=-\frac{\pi}{2}+\arctan{\lambda}, $$ thus we can easily see $$ \eta(\lambda)= \frac{\pi}{2}-\arctan{\lambda}. $$ We set $\lambda =0$ and obtain the desired result \begin{equation} \eta(\lambda=0)=I_1= \frac{\pi}{2}=\int_{0}^{\infty} \frac{\sin x}{x}\mathrm dx. \end{equation} But how to generalize this for $I_n$? Thanks a lot..