Evaluate the following limit for all real values of $x$.
$$\lim_{n \rightarrow \infty} \lim_{m \rightarrow \infty}{\cos^m(n!2\pi x)}$$
My claim is that the limit is $1$ when $x=\frac{k}{n!}$ where $k\in \mathbb{Z}$, $0$ when $x=\frac{1+2k}{n!4}$, limit does not exist when $x=\frac{1+2k}{n!2}$.
When $x$ is not of the above values, limit is $0$.
My reason is that I notice when $\cos(n!2\pi x)=1$, limit will always be one and when $\cos(n!2\pi x)=-1$, we have $\lim(-1)^m$ does not exist. When $-1<\cos(n!2\pi x)<1$, the limit of $m$ will make $\cos(n!2\pi x)=0$ for any fixed $n$.
Is my claim true?