I have to prove that $$ \lim_{n\to\infty} n\sqrt{2-2\cos\left(\frac{2\pi}{n}\right)}=2\pi $$
It's geometrically obvious since it is the limit of the $n$-gons inside a unit circle.
But how do I prove it?
I have to prove that $$ \lim_{n\to\infty} n\sqrt{2-2\cos\left(\frac{2\pi}{n}\right)}=2\pi $$
It's geometrically obvious since it is the limit of the $n$-gons inside a unit circle.
But how do I prove it?
From identity $\sin^2 \frac{t}{2}=\frac{1}{2}(1-\cos t)$ we have \begin{align} \lim_{n\rightarrow\infty}{n\sqrt{2-2\cos\left(\frac{2\pi}{n}\right)}} & = \lim_{n\rightarrow \infty}{2n\sin\left(\frac{\pi}{n}\right)} \\ & = 2\pi\lim_{n\rightarrow \infty}\frac{\sin\left(\frac{\pi}{n}\right)}{\frac{\pi}{n}} \\ & = 2\pi\lim_{t\rightarrow 0^+}\frac{\sin\left(t\right)}{t} \\ & = 2\pi(1) \\ & = 2\pi \end{align}
Hint: $\lim_{n\to\infty}n(f(\frac1n)-f(0))=\lim_{h\to0}\frac{f(h)-f(0)}{h}$
Using power series:
$$\cos\frac{2\pi}n=\sum_{k=0}^\infty(-1)^n\frac{(2\pi)^{2n}}{n^{2n}(2n)!}\implies 2-2\cos\frac{2\pi}n=2\left(\left(\frac{2\pi}n\right)^2\frac12-\left(\frac{2\pi}n\right)^2\frac1{24}+\ldots\right)$$
and from here
$$n\sqrt{2-2\cos\frac{2\pi}n}=n\sqrt{\left(\frac{2\pi}n\right)^2+\mathcal O\left(\frac1{n^2}\right)}\xrightarrow[n\to\infty]{}2\pi$$