The only problematic point is $(0,0)$.
As Siminore noted in the comments, for all $(x,y)\in \mathbb R^2\setminus \{(0,0)\}$ it holds that
$$|f(x,y)|\leq |x|\dfrac {x^2}{x^2+y^2}\leq |x|.$$
Consequently $$\lim \limits_{(x,y)\to (0,0)}\left(|f(x,y)|\right)\leq \lim \limits_{(x,y)\to (0,0)}\left(|x|\right)=0,$$
which implies $\lim \limits_{(x,y)\to (0,0)}\left(f(x,y)\right)=0=f(0,0)$.
For an $\varepsilon$-$\delta$ argument recall that $\lim \limits_{(x,y)\to (0,0)}\left(f(x,y)\right)$ if, and only if,
$$\forall \varepsilon >0\,\exists \delta >0\, \forall (x,y)\in \mathbb R^2\left(\Vert (x,y)-(0,0)\Vert<\delta \implies |f(x,y)-f(0,0)|<\varepsilon\right).$$
Take $\varepsilon >0$, let $\delta=\epsilon$ and let $(x,y)\in \mathbb R^2\setminus \{(0,0)\}$. The case $(x,y)=(0,0)$ is logically trivial.
You wish to prove that $\Vert (x,y)\Vert<\delta \implies \left|\dfrac {x^3}{x^2+y^2}\right|<\varepsilon$.
Assume $\Vert (x,y)\Vert<\delta$.Then $|x|\leq \sqrt{x^2+y^2}=\Vert (x,y)\Vert<\delta$ follows.
But since $|f(x,y)|\leq |x|\dfrac {x^2}{x^2+y^2}\leq |x|$, it follows that $|f(x,y)|<\delta=\varepsilon$, as wished.
Therefore $f$ is continuous.
Let us now analyze the partial derivatives.
One has
$$\begin{cases} \dfrac {\partial f}{\partial x}(x,y)= \dfrac{x^4+3x^2y^2}{(x^2+y^2)^2}\\
\dfrac {\partial f}{\partial x}(0,0)=\lim \limits_{h\to 0}\left(\dfrac {f(h,0)}{h}\right)=\lim \limits_{h\to 0}\left(\dfrac {h^3/h} h\right)=1\end{cases}$$
and
$$\begin{cases} \dfrac {\partial f}{\partial y}(x,y)= \dfrac{-2x^3y}{(x^2+y^2)^2}\\
\dfrac {\partial f}{\partial y}(0,0)=\lim \limits_{h\to 0}\left(\dfrac {f(0,h)}{h}\right)=\lim \limits_{h\to 0}\left(\dfrac 0 h\right)=0\end{cases}$$
So the partial derivatives exist in $\mathbb R^2$, (even though the partial derivative with respect to $y$ isn't continuous - this isn't enough for non-differentiability).
One has, (as a quick consequence of the definition), that $f$ is differentiable at $(0,0)$ if, and only if the limit below exists:
$$\lim_{(x,y) \to (0,0)} \left[\dfrac{f(x,y) - \left(f(0,0) + f_{x}(0,0)(x-0) + f_{y}(0,0)(y-0)\right)}{\sqrt{x^2 + y^2}}\right].$$
This limit, if it exists, equals $\lim \limits_{(x,y)\to (0,0)}\left(-\dfrac{xy^2}{\left(x^2+y^2\right)^{3/2}}\right).$
But, given $k\in \mathbb R$, $$\lim \limits_{\substack{(x,y)\to (0,0)\\x=ky}}\left(-\dfrac{xy^2}{x^2+y^2}\right)=\lim \limits_{\substack{(x,y)\to (0,0)\\x=ky}}\left(-\dfrac{ky^3}{\left(k^2y^2+y^2\right)^{3/2}}\right)=\dfrac {k}{\left(k^2+1\right)^{3/2}},$$
so the limit is path dependent and it doesn't exist.
Therefore $f$ isn't differentiable at $(0,0)$.