$\newcommand{\+}{^{\dagger}}
\newcommand{\angles}[1]{\left\langle\, #1 \,\right\rangle}
\newcommand{\braces}[1]{\left\lbrace\, #1 \,\right\rbrace}
\newcommand{\bracks}[1]{\left\lbrack\, #1 \,\right\rbrack}
\newcommand{\ceil}[1]{\,\left\lceil\, #1 \,\right\rceil\,}
\newcommand{\dd}{{\rm d}}
\newcommand{\down}{\downarrow}
\newcommand{\ds}[1]{\displaystyle{#1}}
\newcommand{\expo}[1]{\,{\rm e}^{#1}\,}
\newcommand{\fermi}{\,{\rm f}}
\newcommand{\floor}[1]{\,\left\lfloor #1 \right\rfloor\,}
\newcommand{\half}{{1 \over 2}}
\newcommand{\ic}{{\rm i}}
\newcommand{\iff}{\Longleftrightarrow}
\newcommand{\imp}{\Longrightarrow}
\newcommand{\isdiv}{\,\left.\right\vert\,}
\newcommand{\ket}[1]{\left\vert #1\right\rangle}
\newcommand{\ol}[1]{\overline{#1}}
\newcommand{\pars}[1]{\left(\, #1 \,\right)}
\newcommand{\partiald}[3][]{\frac{\partial^{#1} #2}{\partial #3^{#1}}}
\newcommand{\pp}{{\cal P}}
\newcommand{\root}[2][]{\,\sqrt[#1]{\vphantom{\large A}\,#2\,}\,}
\newcommand{\sech}{\,{\rm sech}}
\newcommand{\sgn}{\,{\rm sgn}}
\newcommand{\totald}[3][]{\frac{{\rm d}^{#1} #2}{{\rm d} #3^{#1}}}
\newcommand{\ul}[1]{\underline{#1}}
\newcommand{\verts}[1]{\left\vert\, #1 \,\right\vert}
\newcommand{\wt}[1]{\widetilde{#1}}$
$\ds{I \equiv \int_{0}^{\infty}{\arctan\pars{t} \over \expo{\pi t} - 1}\,\dd t}$
\begin{align}
I &=\int_{0}^{\infty}{1 \over \expo{\pi t} - 1}
\int_{0}^{t}{\dd x \over x^{2} + 1}\,\dd t
=\int_{0}^{\infty}{\dd x \over x^{2} + 1}
\int_{x}^{\infty}{\expo{-\pi t} \over 1 - \expo{-\pi t}}\,\dd t
\\[3mm]&=-\,{1 \over \pi}\int_{0}^{\infty}
{\ln\pars{1 - \expo{-\pi x}} \over x^{2} + 1}\,\dd x
=-\,{1 \over \pi}\,\Im\int_{0}^{\infty}
{\ln\pars{1 + \expo{-\pi\bracks{x - \ic}}} \over x - \ic}\,\dd x
\end{align}
Let's consider
$$
{\cal J}\pars{\mu} \equiv
-\,{1 \over \pi}\,\int_{0}^{\infty}\Im\pars{%
{\ln\pars{1 + \expo{-\mu\bracks{x - \ic}}}\over x - \ic}}\,\dd x\quad
\mbox{such that}\quad I = {\cal J}\pars{\pi}\tag{2}
$$
\begin{align}
{\cal J}'\pars{\mu}&=
{1 \over \pi}\,\Im\int_{0}^{\infty}
{\expo{-\mu\bracks{x - \ic}} \over 1 + \expo{-\mu\bracks{x - \ic}}}\dd x
=\left.-\,{1 \over \pi\mu}\,\Im\ln\pars{1 + \expo{-\mu\bracks{x - \ic}}}
\right\vert_{x\ = 0}^{x\ \to\ \infty}
\\[3mm]&={1 \over \pi\mu}\,\Im\ln\pars{1 + \expo{\ic \mu}}
={1 \over \pi\mu}\,\Im\ln\pars{2\expo{\ic\mu/2}\cos\pars{\mu \over 2}}
={1 \over 2\pi}\tag{3}
\end{align}
Notice that $\ds{{\cal J}\pars{0} = -\,\half\,\ln\pars{2}}$
\begin{align}
I&={\cal J}\pars{\pi}
=-\,\half\,\ln\pars{2} + \bracks{{\cal J}\pars{\pi} - {\cal J}\pars{0}}
=-\,\half\,\ln\pars{2}
+ \int_{0}^{\pi}\overbrace{{1 \over 2\pi}}^{\ds{\mbox{From}\ \pars{3}}}\,\dd t
\\[3mm]&=-\,\half\,\ln\pars{2} + \half
\end{align}
$$\color{#00f}{\large%
I \equiv \int_{0}^{\infty}{\arctan\pars{t} \over \expo{\pi t} - 1}\,\dd t
=\half\bracks{1 - \ln\pars{2}}}
$$