Non-negative $x_1$ corresponds to $\frac{z}{1 - z}$, $x_2$ even gives rise to $\frac{1}{1 - z^2}$, odd $x_3$ means $\frac{z}{1 - z^2}$, non-restriced $x_4$, $x_5$ are $\frac{1}{1 - z}$ each:
\begin{align}
[z^{31}] &\frac{z}{1 - z}
\cdot \frac{1}{1 - z^2}
\cdot \frac{z}{1 - z^2}
\cdot \frac{1}{(1 - z)^2} \\
&= [z^{31}] \frac{z^2}{(1 - z)^3 (1 - z^2)^2} \\
&= [z^{29}] \left(
\frac{5}{64 (1 + z)}
+ \frac{1}{32 (1 + z)^2}
+ \frac{5}{64 (1 - z)}
+ \frac{1}{8 (1 - z)^2}
+ \frac{3}{16 (1 - z)^3}
+ \frac{1}{4 (1 - z)^4}
+ \frac{1}{4 (1 - z)^5}
\right)
\end{align}
Use the fact that $\binom{-n}{k} = (-1)^k \binom{k + n - 1}{n - 1}$:
\begin{align}
[z^{31}] &\frac{z^2}{1 - z}
\cdot \frac{1}{1 - z^2}
\cdot \frac{z}{1 - z^2}
\cdot \frac{1}{(1 - z)^2} \\
&= \frac{5}{64} \binom{-1}{29}
+ \frac{1}{32} \binom{-2}{29}
+ \frac{5}{64} \binom{-1}{29} (-1)^{29}
+ \frac{1}{8} \binom{-2}{29} (-1)^{29}
+ \frac{3}{16} \binom{-3}{29} (-1)^{29}
+ \frac{1}{4} \binom{-4}{29} (-1)^{29}
+ \frac{1}{4} \binom{-5}{29} (-1)^{29} \\
&= 11560
\end{align}