How to show that $\mathbb Q(\sqrt 2)$ is not field isomorphic to $\mathbb Q(\sqrt 3)?$
My text provides the hint as: Any isomorphism from $\mathbb Q(\sqrt 2)\to\mathbb Q(\sqrt 3)$ is identity when restricted to $\mathbb Q.$
Ya! I can see that: $\mathbb Q(\sqrt 2)\simeq\mathbb Q[x]/\langle x^2-2\rangle$ and $\mathbb Q(\sqrt 3)\simeq\mathbb Q[x]/\langle x^2-3\rangle.$ Now if $\phi$ be such an isomorphism then $\phi:1+\langle x^2-2\rangle\mapsto1+\langle x^2-3\rangle.$ Hence the restriction of $\phi$ over $\{q+\langle x^2-2\rangle:q\in\mathbb Q\}$ remains the identity.
Now what?