$\newcommand{\+}{^{\dagger}}
\newcommand{\angles}[1]{\left\langle\, #1 \,\right\rangle}
\newcommand{\braces}[1]{\left\lbrace\, #1 \,\right\rbrace}
\newcommand{\bracks}[1]{\left\lbrack\, #1 \,\right\rbrack}
\newcommand{\ceil}[1]{\,\left\lceil\, #1 \,\right\rceil\,}
\newcommand{\dd}{{\rm d}}
\newcommand{\down}{\downarrow}
\newcommand{\ds}[1]{\displaystyle{#1}}
\newcommand{\expo}[1]{\,{\rm e}^{#1}\,}
\newcommand{\fermi}{\,{\rm f}}
\newcommand{\floor}[1]{\,\left\lfloor #1 \right\rfloor\,}
\newcommand{\half}{{1 \over 2}}
\newcommand{\ic}{{\rm i}}
\newcommand{\iff}{\Longleftrightarrow}
\newcommand{\imp}{\Longrightarrow}
\newcommand{\isdiv}{\,\left.\right\vert\,}
\newcommand{\ket}[1]{\left\vert #1\right\rangle}
\newcommand{\ol}[1]{\overline{#1}}
\newcommand{\pars}[1]{\left(#1\right)}
\newcommand{\partiald}[3][]{\frac{\partial^{#1} #2}{\partial #3^{#1}}}
\newcommand{\pp}{{\cal P}}
\newcommand{\root}[2][]{\,\sqrt[#1]{\vphantom{\large A}\,#2\,}\,}
\newcommand{\sech}{\,{\rm sech}}
\newcommand{\sgn}{\,{\rm sgn}}
\newcommand{\totald}[3][]{\frac{{\rm d}^{#1} #2}{{\rm d} #3^{#1}}}
\newcommand{\ul}[1]{\underline{#1}}
\newcommand{\verts}[1]{\left\vert\, #1 \,\right\vert}
\newcommand{\wt}[1]{\widetilde{#1}}$
$\ds{\int_{0}^{\infty}{x^{4} \over \pars{\alpha + x^{2}}^4}\,\dd x
={\pi \over 32\alpha^{3/2}}\,,\quad \Re\pars{\root{\alpha}} > 0:\ {\large ?}}$.
\begin{align}
\color{#c00000}{\int_{0}^{\infty}{x^{4} \over \pars{\alpha + x^{2}}^4}\,\dd x}
&=\half\int_{0}^{\infty}{x^{3/2} \over \pars{\alpha + x}^4}\,\dd x
={1 \over 4}\int_{0}^{\infty}{x^{1/2} \over \pars{\alpha + x}^{3}}\,\dd x
\\[3mm]&={1 \over 16}\int_{0}^{\infty}{x^{-1/2} \over \pars{\alpha + x}^{2}}
\,\dd x
\end{align}
With $\ds{t \equiv x^{1/2}\quad\imp\quad x = t^{2}\,,\quad \dd x = 2t\,\dd t}$:
\begin{align}
\color{#c00000}{\int_{0}^{\infty}{x^{4} \over \pars{\alpha + x^{2}}^4}\,\dd x}
&={1 \over 8}\int_{0}^{\infty}{\dd t \over \pars{\alpha + t^{2}}^{2}}
={1 \over 8\alpha^{3/2}}\lim_{\mu \to \infty}\int_{0}^{\mu/\root{\alpha}}
{\dd t \over \pars{1 + t^{2}}^{2}}
\\[3mm]&={1 \over 8\alpha^{3/2}}\lim_{\mu \to \infty}
\int_{0}^{\mu\pars{\root{\alpha}}^{*}}
{\dd t \over \pars{1 + t^{2}}^{2}}
={1 \over 8\alpha^{3/2}}\int_{0}^{\infty}{\dd t \over \pars{1 + t^{2}}^{2}}
\end{align}
We'll replace $\ds{t = \root{\alpha}\tan\pars{\theta}}$:
\begin{align}
\color{#c00000}{\int_{0}^{\infty}{x^{4} \over \pars{\alpha + x^{2}}^4}\,\dd x}
&={1 \over 8\alpha^{3/2}}\int_{0}^{\pi/2}\cos^{2}\pars{\theta}\,\dd\theta
={1 \over 8\alpha^{3/2}}\int_{0}^{\pi/2}{1 + \cos\pars{2\theta} \over 2}\,\dd\theta
\\[3mm]&={1 \over 8\alpha^{3/2}}\,\pars{\half\,{\pi \over 2}}
\end{align}
$$
\color{#00f}{\large\int_{0}^{\infty}{x^{4} \over \pars{\alpha + x^{2}}^4}\,\dd x
={\pi \over 32\alpha^{3/2}}}
$$