Let $ w_1,...,w_{ \phi(n)}$ be the primitive $n$th roots of unity of $ t^n -1 \in \mathbb Q[t]$. Show that for each $ 1 \le i \le \phi (n)$, there exists an $ \sigma\in Aut \mathbb Q(w_1)$ satisfies $ \sigma ( w_1) = w_i$.
I know the converse is true, that is given any $ \sigma\in Aut \mathbb Q(w_1)$, $ \sigma (w_1) $ always maps to some $ w_i$. But for this direction I have trouble on construct the automorphism. Any help is appreciated.