Consider the following doubly infinite array, where $p_k=P(X=k)$. We find the sum of all the elements of the array in two different ways.
$$\begin{matrix}
p_1 &p_2 & p_3 &p_4 & p_5 &p_6 & p_7 &p_8 &p_9&p_{10}&p_{11} &p_{12} &\dots\\
&p_2 & p_3 &p_4 & p_5&p_6 & p_7 &p_8 &p_9&p_{10}&p_{11} &p_{12} &\dots\\
&& p_3 &p_4 & p_ 5&p_6 & p_7 &p_8 &p_9&p_{10}&p_{11} &p_{12} &\dots\\
&&&p_4 & p_5 &p_6 & p_7 &p_8 &p_9&p_{10}&p_{11} &p_{12} &\dots\\
&&& & p_5 &p_6 & p_7 &p_8 &p_9&p_{10}&p_{11} &p_{12} &\dots\\
&&&& &p_6 & p_7 &p_8 &p_9&p_{10}&p_{11} &p_{12} &\dots\\
&&&& && p_7 &p_8 &p_9&p_{10}&p_{11} &p_{12} &\dots\\
&&&& &&&p_8 &p_9&p_{10}&p_{11} &p_{12} &\dots\\
&&&&&&&&\vdots&\vdots&\vdots&\vdots&\ddots
\end{matrix}
$$
The first way: The first row sum is $P(X \ge 1)$, the second row sum is $P(X\ge 2)$, the third row sum is $P(X \ge 3)$, and so on. So the sum of all the row sums is $\displaystyle\sum_{k=1}^\infty P(X\ge k)$.
The second way: The first column sum is $p_1$, the second column sum is $2p_2$, the third column sum is $3p_3$, and so on. So the sum of all the column sums is $p_1+2p_2+3p_3+\cdots$, that is, $E(X)$.