How can I compute $A(x)+B(x) \mod P(x)$ in $\operatorname{GF}(2^4)$ using the irreducible polynomial $P(x)=x^4+x+1$. What is the influence of the choice of the reduction polynomial on the computation?
$A(x)=x^2+1, B(x)=x^3+x^2+1$
$A(x)=x^2+1, B(x)=x+1$