Let $E_{\text{open}} \subseteq \mathbb{R}^n$, and let $\vec{x_o} \in E$. Let $\vec{f}: E \rightarrow \mathbb{R}^m$. If there exists a linear operator $A: \mathbb{R}^n \rightarrow \mathbb{R}^m$. such that
$$\lim\limits_{\vec{h} \rightarrow 0} \frac{||\vec{f}(\vec{x_0}+\vec{h})-\vec{f}(\vec{x_0})-A\vec{h}||}{||\vec{h}||} = 0$$
Then, by definition, $\vec{f}$ is differentiable, and $A =: d\vec{f}(\vec{x_0})$.
I'm wondering what this definition is called and where can I read more about this?
Thanks