I have a question regarding the following specific differential equation.
$$y'=\left(\begin{matrix} 0 & 1 \\ -1 & 0 \\ \end{matrix}\right)y+\left(\begin{matrix} \sin{(\omega x)} \\ 0 \\ \end{matrix}\right) \;\; \textrm{with}\;\; y(x_{0})=y_{0}$$
I need to show that for every value of $\omega \neq \pm1$ there is at least one periodic solution for $y$. I have found that the solution to the equation is:
$$y(x)=\left(\begin{matrix} \cos{x} & \sin{x} \\ -\sin{x} & \cos{x} \\ \end{matrix}\right)y_{0} + \int^{x}_{x_{0}}\left(\begin{matrix} \cos{(x-\xi)}\sin{(\omega \xi}) \\ -\sin{(x-\xi)}\sin{(\omega \xi)} \\ \end{matrix}\right)d\xi$$
I have a hard time evaluating this integral, but I believe it should be possible to show that for every value $\omega \neq \pm1$ there is at least one periodic solution without evaluating the integral. I fail to see how any irrational number for $\omega$ should give a periodic solution.
Also how would one show that all solutions are periodic if and only if $\omega \in \mathbb{Q}$?
$y(x)=\mathbf{\psi}(x)[\mathbf{\psi}(x_{0})]^{-1}y_{0}+\int^{x}{x{0}}\mathbf{\psi}(x)[\mathbf{\psi}(\xi)]^{-1}b(\xi)d\xi$ with $\psi$ the fundamental matrix.
– Gehaktmolen Apr 09 '14 at 12:40