When $a_k=\frac{k^2}{k^2+1}$
$b_n=a_1a_2a_3...a_n$
What I need to prove is $\lim_{n\to\infty}b_n\gt0$.
I think this limit is$\frac1 {10}$.
Similar problem is $a_k=\frac {k^2}{k^2+1}$
and I used $a_k \gt \frac {k^2-1}{k^2}$
so $b_n \gt \frac{n+1}{4n}$. then $\lim{b_n}\gt 0$
---------------edit-----------
sorry for my mistake
I want to prove when $a_k=\frac{k^2}{k^2+\sqrt{k}}$