Show that $a_n=\sin(n)$ does not converge
My idea:
Take two subsequences: $a_{n_k}=\sin(\frac {\pi k} 2)$ , $a_{n_l}=\sin(\frac {2\pi l} 3)$
So: $\forall n$ : $\lim_{n\to\infty} a_{n_k}=1$, $\lim_{n\to\infty} a_{n_l}=-1$
So two inifinite subsequence converge to different limits thus the sequence $a_n$ doesn't converge.
Is that correct ?
Edit:
The contrapositive of the defintion of a limit of a sequence:
$\exists\epsilon>0 : \forall n\in N : \exists n>N \Rightarrow |x_n-L|>\epsilon$
Take $\epsilon =1$ and we know that $\sin(n)$ is bounded so lets take it's supermum: 1
$|1-1|>\epsilon=1\Rightarrow 0>1 \Rightarrow$ Contradiction.