I'm suppose to proof the following with combinatorial proofs.
1)$$\sum_{i=0}^{n} {a+i \choose i} = {a+n+1 \choose n}$$
2)$$\sum_{i=0}^{n} i{n \choose i} = n2^{n-1}$$
3)$$\sum_{i=0}^{n} {n \choose i}^2 = {2n \choose n}$$
Any ideas how this is done ?