Is it always correct to rewrite $\iint \operatorname{curl}\mathbf{G \cdot} \; d\mathbf{S}$ as
$\iint \color{green}{\operatorname{curl}\mathbf{G} \cdot} \, d\mathbf{S} = \iint \color{green}{\operatorname{curl}\mathbf{G}}{\; \cdot \; (\partial_u \mathbf{r} \times \partial_u \mathbf{r}) } \; dA \qquad ?$
I substituted $\color{green}{\mathbf{F} = \operatorname{curl}\mathbf{G}}$ by virtue of Equation 9 below (from James Stewart P1087).