First, please dispense with the silly notation "PreIm()". The standard notation is $f^{-1}(\cdot)$.
That said, one notes that $f^{-1}$ is generally well-behaved.
If $x\in f^{-1}(A\cup B)$, then $f(x)\in A\cup B$, so either $f(x)\in A$ or $f(x)\in B$, which means $x\in f^{-1}(A)$ or $x\in f^{-1}(B)$, hence $x\in f^{-1}(A)\cup f^{-1}(B)$. We have shown $$f^{-1}(A\cup B)\subset f^{-1}(A)\cup f^{-1}(B).$$
If $x\in f^{-1}(A)\cup f^{-1}(B)$, then either $x\in f^{-1}(A)$ or $x\in f^{-1}(B)$, so either $f(x)\in A$ or $f(x)\in B$, so $f(x)\in A\cup B$, hence $x\in f^{-1}(A\cup B)$. We have shown that $$f^{-1}(A)\cup f^{-1}(B)\subset f^{-1}(A\cup B).$$
Thus
$$
\boxed{f^{-1}(A\cup B) = f^{-1}(A)\cup f^{-1}(B)}
$$
as desired.