$\newcommand{\+}{^{\dagger}}
\newcommand{\angles}[1]{\left\langle\, #1 \,\right\rangle}
\newcommand{\braces}[1]{\left\lbrace\, #1 \,\right\rbrace}
\newcommand{\bracks}[1]{\left\lbrack\, #1 \,\right\rbrack}
\newcommand{\ceil}[1]{\,\left\lceil\, #1 \,\right\rceil\,}
\newcommand{\dd}{{\rm d}}
\newcommand{\down}{\downarrow}
\newcommand{\ds}[1]{\displaystyle{#1}}
\newcommand{\expo}[1]{\,{\rm e}^{#1}\,}
\newcommand{\fermi}{\,{\rm f}}
\newcommand{\floor}[1]{\,\left\lfloor #1 \right\rfloor\,}
\newcommand{\half}{{1 \over 2}}
\newcommand{\ic}{{\rm i}}
\newcommand{\iff}{\Longleftrightarrow}
\newcommand{\imp}{\Longrightarrow}
\newcommand{\isdiv}{\,\left.\right\vert\,}
\newcommand{\ket}[1]{\left\vert #1\right\rangle}
\newcommand{\ol}[1]{\overline{#1}}
\newcommand{\pars}[1]{\left(\, #1 \,\right)}
\newcommand{\partiald}[3][]{\frac{\partial^{#1} #2}{\partial #3^{#1}}}
\newcommand{\pp}{{\cal P}}
\newcommand{\root}[2][]{\,\sqrt[#1]{\vphantom{\large A}\,#2\,}\,}
\newcommand{\sech}{\,{\rm sech}}
\newcommand{\sgn}{\,{\rm sgn}}
\newcommand{\totald}[3][]{\frac{{\rm d}^{#1} #2}{{\rm d} #3^{#1}}}
\newcommand{\ul}[1]{\underline{#1}}
\newcommand{\verts}[1]{\left\vert\, #1 \,\right\vert}
\newcommand{\wt}[1]{\widetilde{#1}}$
\begin{align}
&\color{#c00000}{%
\int_{0}^{\infty}{2\sin\pars{x}\cos^{2}\pars{x} \over x \expo{x\root{3}}}\,\dd x}
=\int_{0}^{\infty}\expo{-x\root{3}}\,
{\sin\pars{x} + \sin\pars{x}\cos\pars{2x} \over x }\,\dd x
\\[3mm]&=\int_{0}^{\infty}\expo{-x\root{3}}\,
{\sin\pars{x} + \bracks{\sin\pars{x + 2x} + \sin\pars{x - 2x}}/2 \over x }\,\dd x
\\[3mm]&=\half\int_{0}^{\infty}\expo{-x\root{3}}\,
{\sin\pars{3x} + \sin\pars{x} \over x }\,\dd x
\\[3mm]&=\color{#c00000}{\half\int_{0}^{\infty}
\pars{\expo{-\root{3}x/3} + \expo{-\root{3}x}}\,
{\sin\pars{x} \over x }\,\dd x}\tag{1}
\end{align}
With $\mu > 0$:
\begin{align}
&\color{#00f}{\int_{0}^{\infty}\expo{-\mu x}\,{\sin\pars{x} \over x }\,\dd x}
=\int_{0}^{\infty}\expo{-\mu x}\,\half\int_{-1}^{1}\expo{\ic kx}\,\dd k\,\dd x
=\half\int_{-1}^{1}\dd k\int_{0}^{\infty}\expo{\pars{\ic k - \mu}x}\,\dd x
\\[3mm]&=\half\int_{-1}^{1}{-1 \over \ic k - \mu}\,\dd k
=\half\int_{-1}^{1}{\ic k + \mu \over k^{2} + \mu^{2}}\,\dd k
=\int_{0}^{1}{\mu \over k^{2} + \mu^{2}}\,\dd k
=\color{#00f}{\arctan\pars{1 \over \mu}}
\end{align}
By replacing this result in $\pars{1}$ we find:
\begin{align}&\color{#00f}{\large%
\int_{0}^{\infty}{2\sin\pars{x}\cos^{2}\pars{x} \over x \expo{x\root{3}}}\,\dd x}
=\half\bracks{\arctan\pars{\root{3}} + \arctan\pars{\root{3} \over 3}}
\\[3mm]&=\half\pars{{\pi \over 3} + {\pi \over 6}}
= \color{#00f}{\large{\pi \over 4}} \approx 0.7854
\end{align}