Find this limit $$\lim_{n\to\infty}\underbrace{\sin{\sin{\cdots\sin{x}}}}_{n},x\in R$$
My idea: let $$f(x)=\underbrace{\sin{\sin{\cdots\sin{x}}}}_{n}$$ then $$f(x+2\pi)=f(x)$$,so we only consider $x\in[0,2\pi]$, so define sequence $a_{n}$ such $$a_{1}=\sin{x},a_{n+1}=\sin{a_{n}}$$
so I think we can Discussion of x.can you someone have methods?
other idea: $$|a_{n+2}-a_{n+1}|=|\sin{a_{n+1}}-\sin{a_{n}}|\le |a_{n+1}-a_{n}|$$