Use the inverse function theorem, a function has an inverse in an interval $(a-c,a+c)$, if it is continuously differentiable at $a$.
We take the $\delta$ derivative to obtain $f'(\delta)=-\frac{\alpha}{z}\delta^{\alpha-1}e^{-\beta d\delta}-\frac{\beta d}{z}\delta^{-\alpha}e^{-\beta d\delta}$, and $f'(1)=-\frac{\alpha}{z}e^{-\beta d}-\frac{\beta d}{z}e^{-\beta d}\neq0$, so it has an inverse in a neighbourhood of $1$.
And in fact the derivative is nonzero $\forall y\in\mathbb{R^+}$, so we need not even restrict to a neighbourhood of $1$.
Following up the other post we have:
$$\frac{1}{z}(-\beta d-\alpha f^{-1}(\delta))\delta(f^{-1})'(\delta)=1$$
Let $g(\delta)=f^{-1}(\delta)$, and we have:
$$\int(-\beta d-\alpha g(\delta))dg(\delta)=\int \frac{z}{\delta}d\delta$$
$$\Rightarrow \left(-\beta d g(\delta)-\frac{\alpha}{2\delta}g(\delta)^2\right)=z\ln(\delta)+C\Rightarrow \left(\beta d g(\delta)+\frac{\alpha}{2\delta}g(\delta)^2\right)+z\ln(\delta)+C=0$$
Thus: $$g(\delta)=f^{-1}(\delta)=\frac{-\beta d\pm\sqrt{\beta\delta-2\frac{\alpha}{\delta}(\ln(\delta)+C)}}{\frac{\alpha}{\delta}}$$