Yes, this holds if $(x_n)\in l^1$. The proof is a bit long, since it involves proving two inequalities. We first prove $\|(x_n)\|_{\infty}\le\lim \limits_{p\to \infty} \|(x_n)\|_p$. For arbitrary $p$ and all $n\in \mathbb{N}$ it's obviously true that $|x_n|^p\le \sum \limits_{n=1}^{\infty}|x_n|^p$, so we obtain $\|(x_n)\|^p_{\infty}\le \sum \limits_{n=1}^{\infty}|x_n|^p$ and this is equivalent to $\|(x_n)\|_{\infty}\le \|(x_n)\|_{p}$. Our claimed inequality follows immediately.
Now, in order to prove $\lim \limits_{p\to \infty} \|(x_n)\|_p \le \|(x_n)\|_{\infty}$, we can assume $p\in \mathbb{N}$, since if $1\le p<q<\infty$, then $\|(x_n)\|_q\le \|(x_n)\|_p$. We first prove the following fact: $$\lim \limits_{N\to \infty} \|(x_n)\|_N=\lim\limits_{N\to\infty}\left(\sum \limits_{n=1}^N|x_n|^N\right)^{\frac{1}{N}}$$ which is of course equivalent to:
$$\lim \limits_{N\to \infty} \|(x_n)\|_N-\left(\sum \limits_{n=1}^N|x_n|^N\right)^{\frac{1}{N}}=0$$
To prove this, let $y_N$ be the sequence that agrees with $(x_n)$ for the first $N$ terms and is zero for all other terms. Then we have $$\|y_N\|_N=\left(\sum \limits_{n=1}^N|x_n|^N\right)^{\frac{1}{N}}$$ allowing us to use the reverse triangle inequality:$$\left| \|(x_n)\|_N-\left(\sum \limits_{n=1}^N|x_n|^N\right)^{\frac{1}{N}}\right|\le\|(x_n)-y_N\|_N=\left(\sum \limits_{n=N+1}^{\infty}|x_n|^N\right)^{\frac{1}{N}}\le \sum \limits_{n=N+1}^{\infty}|x_n|<\epsilon$$
for large enough $N$, since $(x_n)\in l^1$.
We now use this fact to prove the claimed inequality. For all $N\in \mathbb{N}$ it is true that:
$$\left(\sum\limits_{n=1}^N|x_n|^N\right)^{\frac{1}{N}}\le\left(\sum\limits_{n=1}^N\|(x_n)\|^N_{\infty}\right)^{\frac{1}{N}}=N^{\frac{1}{N}}\|(x_n)\|_{\infty}$$
and from this we finally obtain:
$$\lim \limits_{N\to\infty} \|(x_n)\|_N \le \lim \limits_{N\to\infty}N^{\frac{1}{N}}\|(x_n)\|_{\infty}=\|(x_n)\|_{\infty}$$