How to calculate $$I=\int\int_S\frac{d^2S}{r^n}$$ where S is a surface of the sphere $S=\{x^2+y^2+z^2=R^2\}$ and $r=dist((x,y,z),(0,0,c))$, $c>R,c\in\mathbb{R}$ ?
I believe $r=\sqrt{x^2+y^2+(\sqrt{R^2-x^2-y^2}-c)^2}$ so $$I=\int\int_{x^2+y^2<R^2}\frac{1}{\Big(x^2+y^2+(\sqrt{R^2-x^2-y^2}-c)^2\Big)^\frac{n}{2}}*\sqrt{G}$$ where $G = \left| \begin{array}{cc} 1 & 0 \\ 0 & 1 \\ \frac{-x}{\sqrt{R^2-x^2-y^2}} & \frac{-y}{\sqrt{R^2-x^2-y^2}} \end{array} \right|$
I made few calculations using $x=tcos\alpha,y=tsin\alpha$ and then $t=Rsin\beta$ substitutions but I'm stuck with some ugly looking integral, so I'm not sure if I got it all right.
http://math.stackexchange.com/questions/131735/surface-element-in-spherical-coordinates
– DiffeoR Apr 01 '14 at 13:00