The proof given for the inequality in my lecture notes seems confusing to me. The proof is as follows:
Let $\lambda$ be any number and consider the vector $\lambda\textbf{v}-\textbf{w}$. Since $||\lambda\textbf{v}-\textbf{w}||\geqslant 0$ we have $$||\lambda\textbf{v}-\textbf{w}||^2\geqslant 0$$ $$\therefore (\lambda\textbf{v}-\textbf{w},\lambda\textbf{v}-\textbf{w})\geqslant 0$$ $$\therefore {\lambda}^2(\textbf{v},\textbf{v})-2\lambda(\textbf{v},\textbf{w})+(\textbf{w},\textbf{w})\geqslant 0$$ $${\lambda}^2-\frac{2\lambda(\textbf{v},\textbf{w})}{||\textbf{v}||^2}+\frac{||\textbf{w}||^2}{||\textbf{v}||^2}\geqslant 0$$ Completing the square gives: $$\left(\lambda-\frac{(\textbf{v},\textbf{w})}{||\textbf{v}||^2}\right)^2-\left(\frac{(\textbf{v},\textbf{w})}{||\textbf{v}||^2}\right)^2+\frac{||\textbf{w}||^2}{||\textbf{v}||^2}\geqslant 0$$
Now the proof sets $$\lambda=\frac{(\textbf{v},\textbf{w})}{||\textbf{v}||^2}$$ And proceeds to get the inequality. I understand that since $\textbf{v}$ and $\textbf{w}$ can be any vectors this gives the fact that $\lambda$ can be any number. However why does $\lambda$ always $\textbf{have}$ to be equal to the fraction above.
i.e. Surely I can pick a $\textbf{v},\textbf{w}$ and $\lambda$ such that $$\lambda-\frac{(\textbf{v},\textbf{w})}{||\textbf{v}||^2}\neq 0$$
Any help would be appreciated. Thanks.