If we have $ x^y$, where $ y $ is irrational, would the following expression capture the way raising a real number to an irrational exponent is usually defined?
$$x^y= \lim_{n\rightarrow \infty }{{x^{\frac {\left \lfloor 10^ny\right \rfloor}{10^n}}}}=\lim_{n\rightarrow \infty }{\sqrt[10^n]{x^{\left \lfloor 10^ny\right \rfloor}}}$$