1

Any hints for this question , My attempt;
Say $f(x):0$$\rightarrow$$\mathbb{R}$
The by MVT, there exists a $c$$\in$$(0,\infty)$ , such that;
$f'(c)=$$\frac{f(x)-f(0)}{x-0}$
but im not sure about this step..
$\lim_{c \to +\infty}$$f'(c)$=$\lim_{x \to +\infty}$$\frac{f(x)-f(0)}{x-0}$
I am quite sure there is a mistake, any hints would be appreciated.

If $\lim_{x \to +\infty}$$f(x)$ exists and is finite and $\lim_{x \to +\infty}$$f'(x)=b$ then $b=0$.

otupygak
  • 1,299

3 Answers3

1

There is this $e^x$ trick. Consider $$f(x)=\frac{e^x f(x)}{e^x}$$ as $x\to\infty$. Use L'Hopital.

Pedro
  • 122,002
0

$$f(x)=f(a)+\int_a^xf'(t)\ dt$$ So $\displaystyle\int_a^\infty f'(x)\ dx$ converges, because $\lim\limits_{x\to\infty}f(x)$ exists. Buf if $\lim\limits_{x\to\infty}f'(x)$ exists, then it must be $0$, else the integral wouldn't converge.

user2345215
  • 16,422
0

$$\limsup_{h\to 0} \left| \frac{f(x+h) - f(x)} h - b \right| = \limsup_{h\to 0} |f'(x+\theta_{x,h} h) - b| \le \limsup_{h\to 0} \sup_{0<\theta<1}|f'(x+\theta h) - b| =0 $$

mookid
  • 28,236