Any hints for this question ,
My attempt;
Say $f(x):0$$\rightarrow$$\mathbb{R}$
The by MVT, there exists a $c$$\in$$(0,\infty)$ , such that;
$f'(c)=$$\frac{f(x)-f(0)}{x-0}$
but im not sure about this step..
$\lim_{c \to +\infty}$$f'(c)$=$\lim_{x \to +\infty}$$\frac{f(x)-f(0)}{x-0}$
I am quite sure there is a mistake, any hints would be appreciated.
If $\lim_{x \to +\infty}$$f(x)$ exists and is finite and $\lim_{x \to +\infty}$$f'(x)=b$ then $b=0$.