For example, given $1,2,3$, we have 15 combinations:
$1,2,3,12,13,21,23,31,32,123,132,213,231,312,321$.
I have the formula $\sum\limits_{k=1}^{n}\binom{n}{k}*k!$ which can be simplified to $\sum\limits_{k=1}^{n}\frac{n!}{(n-k)!}$
I am wondering whether or not this formula can be further simplified...?