I am trying to evaluate this integral. $$ I=\int_0^\infty \frac{ \ln^2(1+x)}{x^{3/2}} dx=8\pi \ln 2 $$ Note $$ \ln(1+x)=\sum_{n=1}^\infty \frac{(-1)^{n+1}x^n}{n}, \ |x| < 1. $$ I was trying to do use this series expansion but wasn't sure how to go about it because of the square of the logarithm. And also it seems than we then will have $I\propto \int_0^\infty x^{n-3/2}dx$ which will diverge. Thanks
-
1I'd guess that the best way to proceed is to find an appropriate contour in the complex plane and integrate using residues. – Mar 29 '14 at 02:19
-
@T.Bongers I am looking for a solution, thanks though. – Jeff Faraci Mar 29 '14 at 02:25
4 Answers
Integrating by parts,
$$ \begin{align} \int_{0}^{\infty} \frac{\ln^{2}(1+x)}{x^{3/2}} \ dx &= - \frac{2 \ln^{2}(1+x)}{\sqrt{x}} \Bigg|^{\infty}_{0} + 4 \int_{0}^{\infty} \frac{\ln (1+x)}{(1+x) \sqrt{x}} \ dx \\ &=4 \int_{0}^{\infty} \frac{\ln (1+x)}{(1+x) \sqrt{x}} \ dx . \end{align} $$
Now let $x = u^{2}$.
Then
$$\begin{align} \int_{0}^{\infty} \frac{\ln^{2}(1+x)}{x^{3/2}} \ dx &= 8 \int_{0}^{\infty} \frac{\ln (1+u^{2})}{1+u^{2}} \ du \\ &= 8 (\pi \ln 2) \tag{1} \\ &= 8 \pi \ln 2. \end{align}$$
$(1)$ Evaluating $\int_0^{\infty}\frac{\ln(x^2+1)}{x^2+1}dx$

- 42,026
-
-
Your editing makes this problem active and also makes me reminisce that this is the first problem I answered on Math SE. Thanks. $\ddot\smile$ – Tunk-Fey Aug 08 '14 at 16:07
-
@Tunk-Fey Since I just linked to this question, I thought I'd improve the formatting of my answer. Sometimes I wish you could make minor edits to an answer without bumping the question. – Random Variable Aug 08 '14 at 16:33
$\newcommand{\+}{^{\dagger}} \newcommand{\angles}[1]{\left\langle\, #1 \,\right\rangle} \newcommand{\braces}[1]{\left\lbrace\, #1 \,\right\rbrace} \newcommand{\bracks}[1]{\left\lbrack\, #1 \,\right\rbrack} \newcommand{\ceil}[1]{\,\left\lceil\, #1 \,\right\rceil\,} \newcommand{\dd}{{\rm d}} \newcommand{\down}{\downarrow} \newcommand{\ds}[1]{\displaystyle{#1}} \newcommand{\expo}[1]{\,{\rm e}^{#1}\,} \newcommand{\fermi}{\,{\rm f}} \newcommand{\floor}[1]{\,\left\lfloor #1 \right\rfloor\,} \newcommand{\half}{{1 \over 2}} \newcommand{\ic}{{\rm i}} \newcommand{\iff}{\Longleftrightarrow} \newcommand{\imp}{\Longrightarrow} \newcommand{\isdiv}{\,\left.\right\vert\,} \newcommand{\ket}[1]{\left\vert #1\right\rangle} \newcommand{\ol}[1]{\overline{#1}} \newcommand{\pars}[1]{\left(\, #1 \,\right)} \newcommand{\partiald}[3][]{\frac{\partial^{#1} #2}{\partial #3^{#1}}} \newcommand{\pp}{{\cal P}} \newcommand{\root}[2][]{\,\sqrt[#1]{\vphantom{\large A}\,#2\,}\,} \newcommand{\sech}{\,{\rm sech}} \newcommand{\sgn}{\,{\rm sgn}} \newcommand{\totald}[3][]{\frac{{\rm d}^{#1} #2}{{\rm d} #3^{#1}}} \newcommand{\ul}[1]{\underline{#1}} \newcommand{\verts}[1]{\left\vert\, #1 \,\right\vert} \newcommand{\wt}[1]{\widetilde{#1}}$ $\ds{\int_{0}^{\infty}{\ln^{2}\pars{1 + x} \over x^{3/2}}\,\dd x = 8\pi\ln\pars{2}: \ {\large ?}}$
With $\ds{t \equiv {1 \over x + 1}\quad\iff\quad x = {1 \over t} - 1}$: \begin{align} &\color{#00f}{\large\int_{0}^{\infty}{\ln^{2}\pars{1 + x} \over x^{3/2}}\,\dd x}= -2\int_{x = 0}^{x \to \infty}\ln^{2}\pars{1 + x}\,\dd\pars{x^{-1/2}} \\[3mm]&=2\int_{0}^{\infty}x^{-1/2}\bracks{2\ln\pars{1 + x}\,{1 \over 1 + x}}\,\dd x =4\int_{1}^{0}\pars{1 - t \over t}^{-1/2}\ln\pars{1 \over t}t \pars{-\,{\dd t \over t^{2}}} \\[3mm]&=-4\int_{0}^{1}\ln\pars{t}t^{-1/2}\pars{1 - t}^{-1/2}\,\dd t =-4\lim_{\mu \to -1/2}\totald{}{\mu}\int_{0}^{1}t^{\mu}\pars{1 - t}^{-1/2}\,\dd t \\[3mm]&=-4\lim_{\mu \to -1/2}\totald{{\rm B}\pars{\mu + 1,1/2}}{\mu} -4\lim_{\mu \to -1/2}\totald{}{\mu} \bracks{\Gamma\pars{\mu + 1}\Gamma\pars{1/2} \over \Gamma\pars{\mu + 3/2}} \\[3mm]&=-4\Gamma\pars{\half}\lim_{\mu \to -1/2}\braces{% {\Gamma\pars{\mu + 1} \over \Gamma\pars{\mu + 3/2}}\,\bracks{\Psi\pars{\mu + 1} - \Psi\pars{\mu + {3 \over 2}}}} \\[3mm]&=-4\Gamma^{2}\pars{\half}\, {\Psi\pars{1/2} - \Psi\pars{1} \over \Gamma\pars{1}} =-4\pars{\root{\pi}}^{2}\,{\bracks{-2\ln\pars{2} - \gamma} -\pars{-\gamma} \over 1} \\[3mm]&=\color{#00f}{\large 8\pi\ln\pars{2}} \end{align}

- 89,464
-
You always have nice solutions with $\partial_\mu$ or $\partial_\nu$ with these special functions. Very helpful to me....Thanks a lot!!!! – Jeff Faraci Mar 29 '14 at 05:13
-
-
-
@xpaul Thanks. They are quite useful. For that reasons people call them 'specials'. – Felix Marin Aug 08 '14 at 17:58
Using Richard Feynman's favorite method, the method of differentiation under the integral sign. $$ \begin{align} I(\alpha)&=\int_0^\infty\frac{\ln^2(1+\alpha x)}{x^{\frac{3}{2}}}dx\\ \frac{dI(\alpha)}{d\alpha}&=\int_0^\infty\frac{2x\ln(1+\alpha x)}{x^{\frac{3}{2}}(1+\alpha x)}dx\\ I'(\alpha)&=2\int_0^\infty\frac{\ln(1+\alpha x)}{\sqrt{x}(1+\alpha x)}dx. \end{align} $$ Let $\,x=t^2\;\Rightarrow\;dx=2t\,dt$, then $$ \begin{align} I'(\alpha)&=2\int_0^\infty\frac{\ln(1+\alpha t^2)}{t(1+\alpha t^2)}\cdot2t\,dt\\ &=4\int_0^\infty\frac{\ln(1+\alpha t^2)}{(1+\alpha t^2)}dt. \end{align} $$ To solve the integral part, again we use the method of differentiation under the integral sign. $$ \begin{align} I(\beta)&=\int_0^\infty\frac{\ln(1+\alpha\beta t^2)}{(1+\alpha t^2)}dt\\ \frac{dI(\beta)}{d\beta}&=\int_0^\infty\frac{\alpha t^2}{(1+\alpha\beta t^2)(1+\alpha t^2)}dt\\ I'(\beta)&=\int_0^\infty\left[\frac{1}{(\beta-1)(1+\alpha t^2)}-\frac{1}{(\beta-1)(1+\alpha\beta t^2)}\right]dt\\ &=\frac{1}{\beta-1}\int_0^\infty\left[\frac{1}{1+\alpha t^2}-\frac{1}{1+\alpha\beta t^2}\right]dt. \end{align} $$ Note that $$ \int_0^\infty\frac{1}{1+k y^2}dy=\frac{\pi}{2\sqrt{k}}. $$ Therefore $$ \begin{align} I'(\beta)&=\frac{1}{\beta-1}\left(\frac{\pi}{2\sqrt{\alpha}}-\frac{\pi}{2\sqrt{\alpha\beta}}\right)\\ &=\frac{\pi}{2\sqrt{\alpha}}\left(\frac{\sqrt{\beta}-1}{\sqrt{\beta}(\beta-1)}\right)\\ &=\frac{\pi}{2\sqrt{\alpha}}\left(\frac{\left(\sqrt{\beta}-1\right)}{\sqrt{\beta}(\beta-1)}\cdot\frac{\left(\sqrt{\beta}+1\right)}{\left(\sqrt{\beta}+1\right)}\right)\\ &=\frac{\pi}{2\sqrt{\alpha}}\left(\frac{1}{\sqrt{\beta}\left(\sqrt{\beta}+1\right)}\right)\\ \frac{dI(\beta)}{d\beta}&=\frac{\pi}{2\sqrt{\alpha}}\left(\frac{1}{\sqrt{\beta}}-\frac{1}{\sqrt{\beta}+1}\right)\\ I(\beta)&=\frac{\pi}{2\sqrt{\alpha}}\int\left(\frac{1}{\sqrt{\beta}}-\frac{1}{\sqrt{\beta}+1}\right)d\beta\\ &=\frac{\pi}{2\sqrt{\alpha}}\left(2\sqrt{\beta}-2\sqrt{\beta}+2\ln\left(\sqrt{\beta}+1\right)+\text{C}_1\right)\\ &=\frac{\pi}{2\sqrt{\alpha}}\left(2\ln\left(\sqrt{\beta}+1\right)+\text{C}_1\right).\\ \end{align} $$ For $\beta=0$ implying $I_\beta(0)=0$, then $\text{C}_1=0$ and $$ I_\beta(1)=\int_0^\infty\frac{\ln(1+\alpha t^2)}{(1+\alpha t^2)}dt=\frac{\pi\ln 2}{\sqrt{\alpha}}. $$ Now, plug in $I_\beta(1)$ to $I'(\alpha)$. $$ \begin{align} I'(\alpha)&=4\cdot\frac{\pi\ln 2}{\sqrt{\alpha}}\\ \frac{dI(\alpha)}{d\alpha}&=4\pi\ln 2\cdot\alpha^{-\frac{1}{2}}\\ I(\alpha)&=4\pi\ln 2\int\alpha^{-\frac{1}{2}}\,d\alpha\\ &=(4\pi\ln 2)\left(2\alpha^{\frac{1}{2}}+\text{C}_2\right) \end{align} $$ For $\alpha=0$ implying $I_\alpha(0)=0$, then $\text{C}_2=0$. Thus $$ I_\alpha(1)=\int_0^\infty\frac{\ln^2(1+x)}{x^{\frac{3}{2}}}dx=\boxed{\color{blue}{\large8\pi\ln 2}} $$
$$$$
$$\Large\color{blue}{\text{# }\mathbb{Q.E.D.}\text{ #}}$$

- 24,849
-
-
@Jeff You're welcome. Unfortunately, I failed to earn my first bounty. – Tunk-Fey Apr 04 '14 at 07:46
There is another way to solve. Let $$ I(\alpha,\beta)=\int_0^\infty\frac{\ln(1+\alpha x)\ln(1+\beta x)}{x^{\frac{3}{2}}}dx. $$ Note $I=I(1,1)$. It is easy to see that $$ \frac{\partial^2I(\alpha,\beta)}{\partial\alpha\partial\beta}=\int_0^\infty\frac{\sqrt{x}}{(1+\alpha x)(1+\beta x)}dx=\frac{\pi}{\alpha\sqrt{\beta}+\sqrt{\alpha}\beta} $$ and hence $$ \frac{\partial I(\alpha,1)}{\partial\alpha}=\int_0^1 \frac{\pi}{\alpha\sqrt{\beta}+\sqrt{\alpha}\beta}d\beta=2\pi\frac{\log(1+\frac{1}{\sqrt{\alpha}})}{\sqrt{\alpha}} $$ and $$ I(1,1)=\frac{\partial I(\alpha,1)}{\partial\alpha}=2\pi\int_0^1\frac{\log(1+\frac{1}{\sqrt{\alpha}})}{\sqrt{\alpha}}d\alpha=8\pi\ln 2. $$

- 44,000