18

I am trying to evaluate this integral. $$ I=\int_0^\infty \frac{ \ln^2(1+x)}{x^{3/2}} dx=8\pi \ln 2 $$ Note $$ \ln(1+x)=\sum_{n=1}^\infty \frac{(-1)^{n+1}x^n}{n}, \ |x| < 1. $$ I was trying to do use this series expansion but wasn't sure how to go about it because of the square of the logarithm. And also it seems than we then will have $I\propto \int_0^\infty x^{n-3/2}dx$ which will diverge. Thanks

Jeff Faraci
  • 9,878
  • 1
    I'd guess that the best way to proceed is to find an appropriate contour in the complex plane and integrate using residues. –  Mar 29 '14 at 02:19
  • @T.Bongers I am looking for a solution, thanks though. – Jeff Faraci Mar 29 '14 at 02:25

4 Answers4

20

Integrating by parts,

$$ \begin{align} \int_{0}^{\infty} \frac{\ln^{2}(1+x)}{x^{3/2}} \ dx &= - \frac{2 \ln^{2}(1+x)}{\sqrt{x}} \Bigg|^{\infty}_{0} + 4 \int_{0}^{\infty} \frac{\ln (1+x)}{(1+x) \sqrt{x}} \ dx \\ &=4 \int_{0}^{\infty} \frac{\ln (1+x)}{(1+x) \sqrt{x}} \ dx . \end{align} $$

Now let $x = u^{2}$.

Then

$$\begin{align} \int_{0}^{\infty} \frac{\ln^{2}(1+x)}{x^{3/2}} \ dx &= 8 \int_{0}^{\infty} \frac{\ln (1+u^{2})}{1+u^{2}} \ du \\ &= 8 (\pi \ln 2) \tag{1} \\ &= 8 \pi \ln 2. \end{align}$$

$(1)$ Evaluating $\int_0^{\infty}\frac{\ln(x^2+1)}{x^2+1}dx$

  • Thanks, very clear. No questions. +10 – Jeff Faraci Mar 29 '14 at 03:04
  • Your editing makes this problem active and also makes me reminisce that this is the first problem I answered on Math SE. Thanks. $\ddot\smile$ – Tunk-Fey Aug 08 '14 at 16:07
  • @Tunk-Fey Since I just linked to this question, I thought I'd improve the formatting of my answer. Sometimes I wish you could make minor edits to an answer without bumping the question. – Random Variable Aug 08 '14 at 16:33
13

$\newcommand{\+}{^{\dagger}} \newcommand{\angles}[1]{\left\langle\, #1 \,\right\rangle} \newcommand{\braces}[1]{\left\lbrace\, #1 \,\right\rbrace} \newcommand{\bracks}[1]{\left\lbrack\, #1 \,\right\rbrack} \newcommand{\ceil}[1]{\,\left\lceil\, #1 \,\right\rceil\,} \newcommand{\dd}{{\rm d}} \newcommand{\down}{\downarrow} \newcommand{\ds}[1]{\displaystyle{#1}} \newcommand{\expo}[1]{\,{\rm e}^{#1}\,} \newcommand{\fermi}{\,{\rm f}} \newcommand{\floor}[1]{\,\left\lfloor #1 \right\rfloor\,} \newcommand{\half}{{1 \over 2}} \newcommand{\ic}{{\rm i}} \newcommand{\iff}{\Longleftrightarrow} \newcommand{\imp}{\Longrightarrow} \newcommand{\isdiv}{\,\left.\right\vert\,} \newcommand{\ket}[1]{\left\vert #1\right\rangle} \newcommand{\ol}[1]{\overline{#1}} \newcommand{\pars}[1]{\left(\, #1 \,\right)} \newcommand{\partiald}[3][]{\frac{\partial^{#1} #2}{\partial #3^{#1}}} \newcommand{\pp}{{\cal P}} \newcommand{\root}[2][]{\,\sqrt[#1]{\vphantom{\large A}\,#2\,}\,} \newcommand{\sech}{\,{\rm sech}} \newcommand{\sgn}{\,{\rm sgn}} \newcommand{\totald}[3][]{\frac{{\rm d}^{#1} #2}{{\rm d} #3^{#1}}} \newcommand{\ul}[1]{\underline{#1}} \newcommand{\verts}[1]{\left\vert\, #1 \,\right\vert} \newcommand{\wt}[1]{\widetilde{#1}}$ $\ds{\int_{0}^{\infty}{\ln^{2}\pars{1 + x} \over x^{3/2}}\,\dd x = 8\pi\ln\pars{2}: \ {\large ?}}$

With $\ds{t \equiv {1 \over x + 1}\quad\iff\quad x = {1 \over t} - 1}$: \begin{align} &\color{#00f}{\large\int_{0}^{\infty}{\ln^{2}\pars{1 + x} \over x^{3/2}}\,\dd x}= -2\int_{x = 0}^{x \to \infty}\ln^{2}\pars{1 + x}\,\dd\pars{x^{-1/2}} \\[3mm]&=2\int_{0}^{\infty}x^{-1/2}\bracks{2\ln\pars{1 + x}\,{1 \over 1 + x}}\,\dd x =4\int_{1}^{0}\pars{1 - t \over t}^{-1/2}\ln\pars{1 \over t}t \pars{-\,{\dd t \over t^{2}}} \\[3mm]&=-4\int_{0}^{1}\ln\pars{t}t^{-1/2}\pars{1 - t}^{-1/2}\,\dd t =-4\lim_{\mu \to -1/2}\totald{}{\mu}\int_{0}^{1}t^{\mu}\pars{1 - t}^{-1/2}\,\dd t \\[3mm]&=-4\lim_{\mu \to -1/2}\totald{{\rm B}\pars{\mu + 1,1/2}}{\mu} -4\lim_{\mu \to -1/2}\totald{}{\mu} \bracks{\Gamma\pars{\mu + 1}\Gamma\pars{1/2} \over \Gamma\pars{\mu + 3/2}} \\[3mm]&=-4\Gamma\pars{\half}\lim_{\mu \to -1/2}\braces{% {\Gamma\pars{\mu + 1} \over \Gamma\pars{\mu + 3/2}}\,\bracks{\Psi\pars{\mu + 1} - \Psi\pars{\mu + {3 \over 2}}}} \\[3mm]&=-4\Gamma^{2}\pars{\half}\, {\Psi\pars{1/2} - \Psi\pars{1} \over \Gamma\pars{1}} =-4\pars{\root{\pi}}^{2}\,{\bracks{-2\ln\pars{2} - \gamma} -\pars{-\gamma} \over 1} \\[3mm]&=\color{#00f}{\large 8\pi\ln\pars{2}} \end{align}

Felix Marin
  • 89,464
7

Using Richard Feynman's favorite method, the method of differentiation under the integral sign. $$ \begin{align} I(\alpha)&=\int_0^\infty\frac{\ln^2(1+\alpha x)}{x^{\frac{3}{2}}}dx\\ \frac{dI(\alpha)}{d\alpha}&=\int_0^\infty\frac{2x\ln(1+\alpha x)}{x^{\frac{3}{2}}(1+\alpha x)}dx\\ I'(\alpha)&=2\int_0^\infty\frac{\ln(1+\alpha x)}{\sqrt{x}(1+\alpha x)}dx. \end{align} $$ Let $\,x=t^2\;\Rightarrow\;dx=2t\,dt$, then $$ \begin{align} I'(\alpha)&=2\int_0^\infty\frac{\ln(1+\alpha t^2)}{t(1+\alpha t^2)}\cdot2t\,dt\\ &=4\int_0^\infty\frac{\ln(1+\alpha t^2)}{(1+\alpha t^2)}dt. \end{align} $$ To solve the integral part, again we use the method of differentiation under the integral sign. $$ \begin{align} I(\beta)&=\int_0^\infty\frac{\ln(1+\alpha\beta t^2)}{(1+\alpha t^2)}dt\\ \frac{dI(\beta)}{d\beta}&=\int_0^\infty\frac{\alpha t^2}{(1+\alpha\beta t^2)(1+\alpha t^2)}dt\\ I'(\beta)&=\int_0^\infty\left[\frac{1}{(\beta-1)(1+\alpha t^2)}-\frac{1}{(\beta-1)(1+\alpha\beta t^2)}\right]dt\\ &=\frac{1}{\beta-1}\int_0^\infty\left[\frac{1}{1+\alpha t^2}-\frac{1}{1+\alpha\beta t^2}\right]dt. \end{align} $$ Note that $$ \int_0^\infty\frac{1}{1+k y^2}dy=\frac{\pi}{2\sqrt{k}}. $$ Therefore $$ \begin{align} I'(\beta)&=\frac{1}{\beta-1}\left(\frac{\pi}{2\sqrt{\alpha}}-\frac{\pi}{2\sqrt{\alpha\beta}}\right)\\ &=\frac{\pi}{2\sqrt{\alpha}}\left(\frac{\sqrt{\beta}-1}{\sqrt{\beta}(\beta-1)}\right)\\ &=\frac{\pi}{2\sqrt{\alpha}}\left(\frac{\left(\sqrt{\beta}-1\right)}{\sqrt{\beta}(\beta-1)}\cdot\frac{\left(\sqrt{\beta}+1\right)}{\left(\sqrt{\beta}+1\right)}\right)\\ &=\frac{\pi}{2\sqrt{\alpha}}\left(\frac{1}{\sqrt{\beta}\left(\sqrt{\beta}+1\right)}\right)\\ \frac{dI(\beta)}{d\beta}&=\frac{\pi}{2\sqrt{\alpha}}\left(\frac{1}{\sqrt{\beta}}-\frac{1}{\sqrt{\beta}+1}\right)\\ I(\beta)&=\frac{\pi}{2\sqrt{\alpha}}\int\left(\frac{1}{\sqrt{\beta}}-\frac{1}{\sqrt{\beta}+1}\right)d\beta\\ &=\frac{\pi}{2\sqrt{\alpha}}\left(2\sqrt{\beta}-2\sqrt{\beta}+2\ln\left(\sqrt{\beta}+1\right)+\text{C}_1\right)\\ &=\frac{\pi}{2\sqrt{\alpha}}\left(2\ln\left(\sqrt{\beta}+1\right)+\text{C}_1\right).\\ \end{align} $$ For $\beta=0$ implying $I_\beta(0)=0$, then $\text{C}_1=0$ and $$ I_\beta(1)=\int_0^\infty\frac{\ln(1+\alpha t^2)}{(1+\alpha t^2)}dt=\frac{\pi\ln 2}{\sqrt{\alpha}}. $$ Now, plug in $I_\beta(1)$ to $I'(\alpha)$. $$ \begin{align} I'(\alpha)&=4\cdot\frac{\pi\ln 2}{\sqrt{\alpha}}\\ \frac{dI(\alpha)}{d\alpha}&=4\pi\ln 2\cdot\alpha^{-\frac{1}{2}}\\ I(\alpha)&=4\pi\ln 2\int\alpha^{-\frac{1}{2}}\,d\alpha\\ &=(4\pi\ln 2)\left(2\alpha^{\frac{1}{2}}+\text{C}_2\right) \end{align} $$ For $\alpha=0$ implying $I_\alpha(0)=0$, then $\text{C}_2=0$. Thus $$ I_\alpha(1)=\int_0^\infty\frac{\ln^2(1+x)}{x^{\frac{3}{2}}}dx=\boxed{\color{blue}{\large8\pi\ln 2}} $$

$$$$


$$\Large\color{blue}{\text{# }\mathbb{Q.E.D.}\text{ #}}$$

Tunk-Fey
  • 24,849
5

There is another way to solve. Let $$ I(\alpha,\beta)=\int_0^\infty\frac{\ln(1+\alpha x)\ln(1+\beta x)}{x^{\frac{3}{2}}}dx. $$ Note $I=I(1,1)$. It is easy to see that $$ \frac{\partial^2I(\alpha,\beta)}{\partial\alpha\partial\beta}=\int_0^\infty\frac{\sqrt{x}}{(1+\alpha x)(1+\beta x)}dx=\frac{\pi}{\alpha\sqrt{\beta}+\sqrt{\alpha}\beta} $$ and hence $$ \frac{\partial I(\alpha,1)}{\partial\alpha}=\int_0^1 \frac{\pi}{\alpha\sqrt{\beta}+\sqrt{\alpha}\beta}d\beta=2\pi\frac{\log(1+\frac{1}{\sqrt{\alpha}})}{\sqrt{\alpha}} $$ and $$ I(1,1)=\frac{\partial I(\alpha,1)}{\partial\alpha}=2\pi\int_0^1\frac{\log(1+\frac{1}{\sqrt{\alpha}})}{\sqrt{\alpha}}d\alpha=8\pi\ln 2. $$

xpaul
  • 44,000