I'm trying to compute the limit:
$$\lim_{n\to\infty} \frac{n!\cdot(3n)!}{(4n)!}$$
I'm trying to compute the limit:
$$\lim_{n\to\infty} \frac{n!\cdot(3n)!}{(4n)!}$$
$$\frac{n!(3n)!}{4n!} = \frac{n(n-1) ... 1}{4n(4n-1)...(3n+1) } \leq \frac{1}{3n+1} \rightarrow 0 \quad \textrm{as} \quad n \rightarrow \infty. $$
*Hint:*$$\frac{(3n)!}{(4n)!} = \frac{1\cdot 2 \cdot 3\cdots 3n}{1\cdot 2\cdot 3 \cdots 3n\cdot (3n+1) \cdot (3n+2) \cdots (4n-1)\cdot 4n}=\frac{1}{(3n+1)(3n+2)\cdots 4n}$$
but this is limit to 0 no to inf,where is my mistake?
– user2976686 Mar 25 '14 at 22:11