Let D be a domain and $\emptyset \subset A \subseteq D^*$
If $x \in D^*$ and $GCD(xA)\neq \emptyset$ then $GCD(A)\neq\emptyset$ and $GCD(xA) = xGCD(A)$.
I've already figured out how to show that $GCD(A)\neq\emptyset$ and that there exists an element $r \in GCD(A)$ but I'm not sure how to show that $GCD(xA) = xGCD(A)$.
Any advice would be great!