$$1 + 5 + 5^2 + \ldots + 5^n = \frac{5^{n+1}-1}{4}$$
Basis case $n= 0$:
$1^0 = 1 \;\;\;\;\;\;\;\;\;\;\;\; \frac{5^{1+1}-1}{4}=1$
Assume true for $n=k$: $$1 + 5 + 5^2 + \ldots + 5^k = \frac{5^{k+1}-1}{4}$$
Need to show for $n=k+1$: $$1 + 5 + 5^2 + \ldots + 5^{k+1} = \frac{5^{k+1+1}-1}{4} = \frac{5^{k+2}-1}{4}$$
Induction proof $$\frac{5^{k+1}-1}{4} + 5^{k+1}=\frac{5^{k+1}-1}{4} + \frac{4(5^{k+1})}{4}$$ This is where I am stuck and do not know if I am even right with this at all.