Here is an elementary proof:
1) Claim 1: $\frac{x}{e^x}\to 0$. Since
$$\frac{1}{e}\frac{\lfloor x \rfloor}{e^{\lfloor x \rfloor}}\le \frac{x}{e^x}\le\frac{\lfloor x \rfloor+1}{e^{\lfloor x \rfloor+1}}e$$
and $n/q^n\to 0$ as $n\to \infty$ when $q>1$ (by ratio test). Thus $x/e^x\to 0$ as $x\to \infty$ by squeeze theorem.
2) Claim 2: $\frac{x^n}{e^x}\to 0$ for all $n\in \mathbb{Z}$. If $n\le 0$ the result is trivial. For $n> 0$, let $q = e^{1/n}>1$, so
$$\lim _{x\to \infty}\frac{x^{n}}{e^x}=\lim _{x\to \infty}\bigg(\frac{x}{q^x}\bigg)^n=\lim _{x\to \infty}\frac{x}{q^x}\cdot\lim _{x\to \infty}\frac{x}{q^x}\ldots \lim _{x\to \infty}\frac{x}{q^x}=0$$
3) Claim 3: $\frac{x^a}{e^x}\to 0$, $a\in \mathbb{R}$. For $x>1$ we have
$$0\le \frac{x^a}{e^x}\le \frac{x^{\lfloor a\rfloor+1}}{e^x}\to 0$$
Now given $N>0$ there is a $n_{0}$ such that $x^{a}/e^x<1/N$ for $x\ge n_0$. Thus $N<e^x/x^a$, i.e., $e^x/x^a \to \infty$ as $x\to \infty$.