Yes: the elements of $[0,1)\cap\mathbb{Q}$ form a complete set of coset representatives for $\mathbb{Z}$ in $\mathbb{Q}$. That is:
- Every element of $\mathbb{Q}$ is congruent modulo $\mathbb{Z}$ to at least one element of $[0,1)\cap\mathbb{Q}$; and
- No two distinct elements of $[0,1)\cap\mathbb{Q}$ are congruent modulo $\mathbb{Z}$.
That means that each element of $\mathbb{Q}/\mathbb{Z}$ corresponds to one and only one element of $[0,1)\cap \mathbb{Q}$. Since the sum of classes in the quotient is equal to the class of the sum, we have that if $q_1,q_2\in\mathbb{Q}$ correspond to the rationals $r_1$ and $r_2$ in $[0,1)\cap\mathbb{Q}$, respectively, then
$$\begin{align*}
(q_1+\mathbb{Z}) + (q_2+\mathbb{Z}) &= (r_1+\mathbb{Z}) + (r_2+\mathbb{Z})\\
&= (r_1+r_2)+\mathbb{Z}\\
&=\left\{\begin{array}{ll}
(r_1+r_2)+\mathbb{Z} & \text{if }0\leq r_1+r_2\lt 1\\
(r_1+r_2-1 + \mathbb{Z} & \text{if }1\leq r_1+r_2
\end{array}\right.
\end{align*}$$
which shows you that this group is isomorphic to $\mathbb{Q}\cap[0,1]$ mod $1$.