How to integrate $\displaystyle 1-e^{-1/x^2}$ ?
as hint is given: $\displaystyle\int_{\mathbb R}e^{-x^2/2}=\sqrt{2\pi}$
If i substitute $u=\dfrac{1}{x}$, it doesn't bring anything:
$\,\displaystyle\int\limits_{-\infty}^{\infty}\left(1-e^{-1/x^2}\right)dx=\int\limits_{-\infty}^{0}\left(1-e^{-1/x^2}\right)dx+\int\limits_{0}^{\infty}\left(1-e^{-1/x^2}\right)dx\overset{?}=2\int\limits_{0}^{\infty}\left(1-\frac{e^{-u^2}}{-u^2}\right)du$
$2\displaystyle\int\limits_{0}^{\infty}\left(1-\frac{e^{-u^2}}{-u^2}\right)du=?$
How to continue ?
$\textbf{The original exercise was}$:
If a probability has a density $f(x)=C(1-e^{-1/x^2})$ then determine the value of constant $C$
Since $\displaystyle\int f\overset{!}=1$, i thought first to calculate the expression above.
($\textbf{ATTENTION:}$ Question edited from integrating $e^{-1/x^2}$ to integrating $1-e^{-1/x^2}$)