Hint $\ $ modular reducing Bezout identity $\ a\,b + c\,m = 1\,\Rightarrow\, {\rm mod}\ m\!:\ ab\equiv 1\,\Rightarrow\, a\equiv b^{-1}$
Remark $\ $ The "$\rm\color{#c00}{back}$-substitution method" for the extended gcd is notoriously error-prone. Simpler to compute and easier to remember is the $\rm\color{#c00}{forward}$ method described at length here. Executing that algorithm, optimized using least magnitude (vs. least positive) remainders, yields
$$\begin{array}{rrr}
4620 & 1 & 0\\
101 & 0 & 1\\
-26 & 1 & -46\\
-3 & 4& -183\\
\color{#c00}1 & \!\!\color{#0a0}{-35} & \!\!\!\color{#90f}{1601}\end{array}\qquad\quad$$
where each line $\,\ a\ \ b\ \ c\ \,$ means that $\ a = 4620\, b + 101\, c.\ $ Therefore
$$ \begin{eqnarray} \color{#0a0}{-35}\cdot\, &4620& +\, \color{#90f}{1601}\cdot 101 = \color{#c00}1\\[.2em]
\Rightarrow\ \ {\rm mod}\ \ & 4620&\!:\ \ 1601\cdot 101\equiv 1\end{eqnarray}\ \ \ $$
The linked post described the algorithm in great detail, in a way that is easy to remember.
Remark $ $ Note that using least magnitude residues has halved the number of steps compared to using the traditional least nonnegative residues (here $\,3\,$ steps vs. $\,6\,$ steps in robjohn's answer).