This can be done using a basic complex variables technique.
Suppose we seek to verify that
$$\sum_{j=0}^q {m\choose j} (-1)^j {n-j\choose q-j}
= \sum_{j=0}^q {m+k\choose j} (-1)^j {n-j+k\choose q-j} .$$
We will treat the case $q=m$ and $n\le m.$
Introduce the two integral representations
$${n-j\choose q-j}
= \frac{1}{2\pi i}
\int_{|z|=\epsilon} \frac{1}{z^{q-j+1}} (1+z)^{n-j} \; dz$$
and
$${n-j+k\choose q-j}
= \frac{1}{2\pi i}
\int_{|z|=\epsilon} \frac{1}{z^{q-j+1}} (1+z)^{n-j+k} \; dz$$
This gives the following integral for the sum on the LHS
$$\frac{1}{2\pi i}
\int_{|z|=\epsilon}
\sum_{j=0}^m {m\choose j} (-1)^j
\frac{1}{z^{q-j+1}} (1+z)^{n-j} \; dz
\\ = \frac{1}{2\pi i}
\int_{|z|=\epsilon}
\frac{(1+z)^n}{z^{q+1}}
\sum_{j=0}^m {m\choose j} (-1)^j
\frac{z^j}{(1+z)^j} \; dz
\\ = \frac{1}{2\pi i}
\int_{|z|=\epsilon}
\frac{(1+z)^n}{z^{q+1}}
\left(1-\frac{z}{1+z}\right)^m \; dz
\\ = \frac{1}{2\pi i}
\int_{|z|=\epsilon}
\frac{1}{z^{q+1}}
\frac{1}{(1+z)^{m-n}} \; dz.$$
We get the following integral for the sum on the RHS
$$\frac{1}{2\pi i}
\int_{|z|=\epsilon}
\sum_{j=0}^m {m+k\choose j} (-1)^j
\frac{1}{z^{q-j+1}} (1+z)^{n-j+k} \; dz
\\ = \frac{1}{2\pi i}
\int_{|z|=\epsilon} \frac{(1+z)^{n+k}}{z^{q+1}}
\sum_{j=0}^m {m+k\choose j} (-1)^j
\frac{z^j}{(1+z)^j} \; dz
\\ = \frac{1}{2\pi i}
\int_{|z|=\epsilon} \frac{(1+z)^{n+k}}{z^{q+1}}
\left(
\left(1-\frac{z}{1+z}\right)^{m+k}
-\sum_{j=m+1}^{m+k}
{m+k\choose j} (-1)^j
\frac{z^j}{(1+z)^j}
\right) dz.$$
There are two pieces here inside the parentheses, call them $A$ and $B$.
For $A$ we get
$$\frac{1}{2\pi i}
\int_{|z|=\epsilon} \frac{(1+z)^{n+k}}{z^{q+1}}
\left(1-\frac{z}{1+z}\right)^{m+k} \; dz
\\ = \frac{1}{2\pi i}
\int_{|z|=\epsilon} \frac{1}{z^{q+1}}
\frac{1}{(1+z)^{m-n}} \; dz$$
This is the same as the LHS. Now we just need to show that piece $B$
is zero. It is given by
$$- \frac{1}{2\pi i}
\int_{|z|=\epsilon} \frac{(1+z)^{n+k}}{z^{q+1}}
\sum_{j=m+1}^{m+k}
{m+k\choose j} (-1)^j
\frac{z^j}{(1+z)^j} \; dz.$$
But we have $j\ge m+1 = q+1$ so the apparent pole at zero vanishes and
this term is analytic in and on the circle $|z|=\epsilon$ with no poles
inside it and piece $B$ is indeed zero.
We can stop here without further evaluation because the integrals for
LHS and RHS are seen to be the same. Moreover, they are trivial to evaluate,
we get $$(-1)^m \times {2m-n-1\choose m-n-1}.$$
The reader is invited to supply a proof for the case $q<m.$
A trace as to when this method appeared on MSE and by whom starts at this
MSE link.