2

closed form for $$\binom{n}{0}+\binom{n}{3}+\binom{n}{6}+...+\binom{n}{n}$$

I tried to solve it by :

$$\binom{n}{0}+\binom{n}{3}+\binom{n}{6}+...+\binom{n}{n}=\sum_{k=0}^{n/3}\binom{n}{3k}$$

$$\sum_{k=0}^{n/3}\binom{n}{3k}=\sum_{k=0}^{n/3}\frac{1}{2\pi i}\int_{\left |z \right |=1}\frac{(1+z)^n}{z^{3k+1}}dz$$

then using geometric series but i got no result .

what is your suggest to solve ?

1 Answers1

2

Assume that $3|n$. $$S_1 = \binom{n}{0}+\binom{n}{3}+\cdots +\binom{n}{n}\\ S_2 = \binom{n}{1}+\binom{n}{4}+\cdots +\binom{n}{n-2}\\ S_3 = \binom{n}{2}+\binom{n}{5}+\cdots +\binom{n}{n-1}\\ S_1 + S_2 + S_3 = 2^n\\ S_1 + jS_2 + j^2 S_3 = (1+j)^n = (-1)^{n/3}\\ S_1 + j^2S_2 + j S_3 = (1+j^2)^n = (-1)^{n/3} $$ with $j^3 = 1, j\notin \Bbb R$.

Now sum up everything: $$ 3S_1 + (1+j+j^2)(S_2+S_3) = 2^n + 2(-1)^{n/3}\\ S_1 = \frac 13[2^n + 2(-1)^{n/3}] $$

mookid
  • 28,236