closed form for $$\binom{n}{0}+\binom{n}{3}+\binom{n}{6}+...+\binom{n}{n}$$
I tried to solve it by :
$$\binom{n}{0}+\binom{n}{3}+\binom{n}{6}+...+\binom{n}{n}=\sum_{k=0}^{n/3}\binom{n}{3k}$$
$$\sum_{k=0}^{n/3}\binom{n}{3k}=\sum_{k=0}^{n/3}\frac{1}{2\pi i}\int_{\left |z \right |=1}\frac{(1+z)^n}{z^{3k+1}}dz$$
then using geometric series but i got no result .
what is your suggest to solve ?